ironrock commited on
Commit
00fb700
1 Parent(s): 86548cd

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +71 -59
README.md CHANGED
@@ -1,88 +1,100 @@
1
  ---
2
- license: other
3
- library_name: peft
4
  tags:
5
- - trl
6
- - sft
7
- - generated_from_trainer
8
  base_model: meta-llama/Meta-Llama-3-8B
9
- datasets:
10
- - generator
11
  model-index:
12
- - name: WeniGPT-Agents-Llama3-1.0.8-SFT
13
  results: []
 
14
  ---
15
 
16
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
- should probably proofread and complete it, then remove this comment. -->
18
 
19
- # WeniGPT-Agents-Llama3-1.0.8-SFT
 
20
 
21
- This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the generator dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 1.3744
24
 
25
- ## Model description
26
 
27
- More information needed
28
 
29
- ## Intended uses & limitations
30
 
31
- More information needed
32
 
33
- ## Training and evaluation data
 
 
 
 
34
 
35
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
- ## Training procedure
 
 
 
 
 
 
 
 
38
 
39
  ### Training hyperparameters
40
 
41
  The following hyperparameters were used during training:
42
  - learning_rate: 0.0002
43
- - train_batch_size: 1
44
- - eval_batch_size: 1
45
- - seed: 42
46
  - gradient_accumulation_steps: 2
 
47
  - total_train_batch_size: 2
48
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
- - lr_scheduler_type: linear
50
- - lr_scheduler_warmup_ratio: 0.03
51
- - training_steps: 669
52
- - mixed_precision_training: Native AMP
53
 
54
  ### Training results
55
 
56
- | Training Loss | Epoch | Step | Validation Loss |
57
- |:-------------:|:------:|:----:|:---------------:|
58
- | 1.7877 | 0.1342 | 30 | 1.7082 |
59
- | 1.3675 | 0.2685 | 60 | 1.4539 |
60
- | 1.3782 | 0.4027 | 90 | 1.4236 |
61
- | 1.3884 | 0.5369 | 120 | 1.3938 |
62
- | 1.3448 | 0.6711 | 150 | 1.3899 |
63
- | 1.3357 | 0.8054 | 180 | 1.3870 |
64
- | 1.2788 | 0.9396 | 210 | 1.3739 |
65
- | 1.2396 | 1.0738 | 240 | 1.3778 |
66
- | 1.2949 | 1.2081 | 270 | 1.3809 |
67
- | 1.337 | 1.3423 | 300 | 1.3792 |
68
- | 1.3266 | 1.4765 | 330 | 1.3775 |
69
- | 1.2735 | 1.6107 | 360 | 1.3744 |
70
- | 1.2809 | 1.7450 | 390 | 1.3752 |
71
- | 1.2383 | 1.8792 | 420 | 1.3775 |
72
- | 1.2116 | 2.0134 | 450 | 1.3859 |
73
- | 1.0153 | 2.1477 | 480 | 1.3926 |
74
- | 1.2039 | 2.2819 | 510 | 1.3884 |
75
- | 1.2451 | 2.4161 | 540 | 1.3886 |
76
- | 1.2311 | 2.5503 | 570 | 1.3921 |
77
- | 1.1299 | 2.6846 | 600 | 1.3941 |
78
- | 1.2163 | 2.8188 | 630 | 1.3913 |
79
- | 1.0719 | 2.9530 | 660 | 1.3907 |
80
-
81
-
82
  ### Framework versions
83
 
84
- - PEFT 0.10.0
85
- - Transformers 4.40.0
86
- - Pytorch 2.1.0+cu118
87
- - Datasets 2.18.0
88
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ library_name: "trl"
4
  tags:
5
+ - SFT
6
+ - WeniGPT
 
7
  base_model: meta-llama/Meta-Llama-3-8B
 
 
8
  model-index:
9
+ - name: Weni/WeniGPT-Agents-Llama3-1.0.8-SFT
10
  results: []
11
+ language: ['pt']
12
  ---
13
 
14
+ # Weni/WeniGPT-Agents-Llama3-1.0.8-SFT
 
15
 
16
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B] on the dataset Weni/wenigpt-agent-1.4.0 with the SFT trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
17
+ Description: Experiment with SFT and Llama3 and updates in requirements
18
 
 
19
  It achieves the following results on the evaluation set:
20
+ {'eval_loss': 1.3743919134140015, 'eval_runtime': 10.9572, 'eval_samples_per_second': 4.198, 'eval_steps_per_second': 4.198, 'epoch': 2.9932885906040267}
21
 
22
+ ## Intended uses & limitations
23
 
24
+ This model has not been trained to avoid specific intructions.
25
 
26
+ ## Training procedure
27
 
28
+ Finetuning was done on the model meta-llama/Meta-Llama-3-8B with the following prompt:
29
 
30
+ ```
31
+ ---------------------
32
+ System_prompt:
33
+ Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma:
34
+ {instructions_formatted}
35
 
36
+ {context_statement}
37
+
38
+ Lista de requisitos:
39
+ - Responda de forma natural, mas nunca fale sobre um assunto fora do contexto.
40
+ - Nunca traga informações do seu próprio conhecimento.
41
+ - Repito é crucial que você responda usando apenas informações do contexto.
42
+ - Nunca mencione o contexto fornecido.
43
+ - Nunca mencione a pergunta fornecida.
44
+ - Gere a resposta mais útil possível para a pergunta usando informações do conexto acima.
45
+ - Nunca elabore sobre o porque e como você fez a tarefa, apenas responda.
46
+
47
+
48
+ ---------------------
49
+ Question:
50
+ {question}
51
 
52
+
53
+ ---------------------
54
+ Response:
55
+ {answer}
56
+
57
+
58
+ ---------------------
59
+
60
+ ```
61
 
62
  ### Training hyperparameters
63
 
64
  The following hyperparameters were used during training:
65
  - learning_rate: 0.0002
66
+ - per_device_train_batch_size: 1
67
+ - per_device_eval_batch_size: 1
 
68
  - gradient_accumulation_steps: 2
69
+ - num_gpus: 1
70
  - total_train_batch_size: 2
71
+ - optimizer: AdamW
72
+ - lr_scheduler_type: cosine
73
+ - num_steps: 669
74
+ - quantization_type: bitsandbytes
75
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 8\n - lora_alpha: 16\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['v_proj', 'q_proj']\n - task_type: CAUSAL_LM",)
76
 
77
  ### Training results
78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  ### Framework versions
80
 
81
+ - transformers==4.40.0
82
+ - datasets==2.18.0
83
+ - peft==0.10.0
84
+ - safetensors==0.4.2
85
+ - evaluate==0.4.1
86
+ - bitsandbytes==0.43
87
+ - huggingface_hub==0.22.2
88
+ - seqeval==1.2.2
89
+ - auto-gptq==0.7.1
90
+ - gpustat==1.1.1
91
+ - deepspeed==0.14.0
92
+ - wandb==0.16.6
93
+ - trl==0.8.1
94
+ - accelerate==0.29.3
95
+ - coloredlogs==15.0.1
96
+ - traitlets==5.14.2
97
+ - git+https://github.com/casper-hansen/AutoAWQ.git
98
+
99
+ ### Hardware
100
+ - Cloud provided: runpod.io