Upload infer_f_.py with huggingface_hub
Browse files- infer_f_.py +126 -0
infer_f_.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
5 |
+
from qwen_vl_utils import process_vision_info
|
6 |
+
import json
|
7 |
+
from tqdm import tqdm
|
8 |
+
import os
|
9 |
+
|
10 |
+
def read_json(file_path):
|
11 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
12 |
+
data = json.load(file)
|
13 |
+
return data
|
14 |
+
|
15 |
+
def write_json(file_path, data):
|
16 |
+
with open(file_path, 'w', encoding='utf-8') as file:
|
17 |
+
json.dump(data, file, ensure_ascii=False, indent=4)
|
18 |
+
|
19 |
+
# default: Load the model on the available device(s)
|
20 |
+
print(torch.cuda.device_count())
|
21 |
+
model_path = "/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/LLaMA-Factory/output/Qwen2.5-VL-3B_all"
|
22 |
+
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
23 |
+
# model_path, torch_dtype="auto", device_map="auto"
|
24 |
+
# )
|
25 |
+
|
26 |
+
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
27 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
28 |
+
model_path,
|
29 |
+
torch_dtype=torch.bfloat16,
|
30 |
+
attn_implementation="flash_attention_2",
|
31 |
+
device_map="auto",
|
32 |
+
)
|
33 |
+
|
34 |
+
# default processor
|
35 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
36 |
+
print(model.device)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
data = read_json('/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/LLaMA-Factory/data/Percption_.json')
|
42 |
+
save_data = []
|
43 |
+
correct_num = 0
|
44 |
+
begin = 0
|
45 |
+
end = len(data)
|
46 |
+
batch_size = 1
|
47 |
+
for batch_idx in tqdm(range(begin, end, batch_size)):
|
48 |
+
batch = data[batch_idx:batch_idx + batch_size]
|
49 |
+
|
50 |
+
image_list = []
|
51 |
+
input_text_list = []
|
52 |
+
data_list = []
|
53 |
+
save_list = []
|
54 |
+
sd_ans = []
|
55 |
+
# while True:
|
56 |
+
for idx, i in enumerate(batch):
|
57 |
+
save_ = {
|
58 |
+
"role": "user",
|
59 |
+
"content": [
|
60 |
+
{
|
61 |
+
"type": "video",
|
62 |
+
"video": "file:///path/to/video1.mp4",
|
63 |
+
"max_pixels": 360 * 420,
|
64 |
+
"fps": 1.0,
|
65 |
+
},
|
66 |
+
{"type": "text", "text": "Describe this video."},
|
67 |
+
],
|
68 |
+
"answer":"None",
|
69 |
+
"result":"None",
|
70 |
+
}
|
71 |
+
messages = {
|
72 |
+
"role": "user",
|
73 |
+
"content": [
|
74 |
+
{
|
75 |
+
"type": "video",
|
76 |
+
"video": "file:///path/to/video1.mp4",
|
77 |
+
"max_pixels": 360 * 420,
|
78 |
+
"fps": 1.0,
|
79 |
+
},
|
80 |
+
{"type": "text", "text": "Describe this video."},
|
81 |
+
],
|
82 |
+
}
|
83 |
+
|
84 |
+
|
85 |
+
video_path = i['videos']
|
86 |
+
question = i['messages'][0]['content']
|
87 |
+
answer = i['messages'][1]['content']
|
88 |
+
messages['content'][0]['video'] = video_path
|
89 |
+
messages['content'][1]['text'] = question
|
90 |
+
|
91 |
+
save_['content'][0]['video'] = video_path
|
92 |
+
save_['content'][1]['text'] = question
|
93 |
+
save_['answer'] = answer
|
94 |
+
sd_ans.append(answer)
|
95 |
+
data_list.append(messages)
|
96 |
+
save_list.append(save_)
|
97 |
+
|
98 |
+
text = processor.apply_chat_template(data_list, tokenize=False, add_generation_prompt=True)
|
99 |
+
image_inputs, video_inputs, video_kwargs = process_vision_info(data_list, return_video_kwargs=True)
|
100 |
+
fps = 1
|
101 |
+
inputs = processor(
|
102 |
+
text=[text],
|
103 |
+
images=image_inputs,
|
104 |
+
videos=video_inputs,
|
105 |
+
padding=True,
|
106 |
+
return_tensors="pt",
|
107 |
+
**video_kwargs,
|
108 |
+
)
|
109 |
+
inputs = inputs.to(model.device)
|
110 |
+
|
111 |
+
# Inference
|
112 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
113 |
+
generated_ids_trimmed = [
|
114 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
115 |
+
]
|
116 |
+
output_text = processor.batch_decode(
|
117 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
118 |
+
)
|
119 |
+
for idx,x in enumerate(output_text):
|
120 |
+
save_list[idx]['result'] = x
|
121 |
+
save_data.append(save_list[idx])
|
122 |
+
|
123 |
+
print("correct_num", correct_num)
|
124 |
+
write_json("infer_finetune_percption.json",save_data)
|
125 |
+
|
126 |
+
|