gmms_transformer_models / load_model.py
Weijie1996's picture
Upload 7 files
5273503 verified
import torch
import gmm_transformer as gmm_model
def load_model(
n_components = 6,
hidden_d = 24 * 4,
out_d = 24,
n_heads = 4,
mlp_ratio = 8,
n_blocks = 6,
encoder_path = r'_encoder_25_4537398.pth',
path_para = r'_embedding_25_4537398.pth',
path_token = r'_emb_empty_token_25_4537398.pth',
random_sample_num = None
):
chw = (1, random_sample_num, 25)
# Set device to GPU if available, otherwise use CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize the transformer model
encoder = gmm_model.ViT_encodernopara(chw, hidden_d, out_d, n_heads, mlp_ratio, n_blocks).to(device)
_model_scale = sum(p.numel() for p in encoder.parameters() if p.requires_grad)
print('Number of parameters of encoder:', _model_scale)
# Load the pre-trained model state
encoder.load_state_dict(torch.load(encoder_path, map_location=device))
state_dict_para = torch.load(path_para, map_location=device)
state_dict_token = torch.load(path_token, map_location=device)
return encoder, state_dict_para, state_dict_token