ashawkey commited on
Commit
dc7086b
1 Parent(s): 76ff91e

add gradio example

Browse files
Files changed (4) hide show
  1. gradio_app.py +237 -0
  2. main.py +1 -1
  3. nerf/utils.py +24 -14
  4. readme.md +6 -0
gradio_app.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import argparse
3
+
4
+ from nerf.provider import NeRFDataset
5
+ from nerf.utils import *
6
+
7
+ import gradio as gr
8
+ import gc
9
+
10
+ print(f'[INFO] loading options..')
11
+
12
+ # fake config object, this should not be used in CMD, only allow change from gradio UI.
13
+ parser = argparse.ArgumentParser()
14
+ parser.add_argument('--text', default=None, help="text prompt")
15
+ # parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --dir_text")
16
+ # parser.add_argument('-O2', action='store_true', help="equals --fp16 --dir_text")
17
+ parser.add_argument('--test', action='store_true', help="test mode")
18
+ parser.add_argument('--save_mesh', action='store_true', help="export an obj mesh with texture")
19
+ parser.add_argument('--eval_interval', type=int, default=10, help="evaluate on the valid set every interval epochs")
20
+ parser.add_argument('--workspace', type=str, default='trial_gradio')
21
+ parser.add_argument('--guidance', type=str, default='stable-diffusion', help='choose from [stable-diffusion, clip]')
22
+ parser.add_argument('--seed', type=int, default=0)
23
+
24
+ ### training options
25
+ parser.add_argument('--iters', type=int, default=10000, help="training iters")
26
+ parser.add_argument('--lr', type=float, default=1e-3, help="initial learning rate")
27
+ parser.add_argument('--ckpt', type=str, default='latest')
28
+ parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
29
+ parser.add_argument('--max_steps', type=int, default=1024, help="max num steps sampled per ray (only valid when using --cuda_ray)")
30
+ parser.add_argument('--num_steps', type=int, default=64, help="num steps sampled per ray (only valid when not using --cuda_ray)")
31
+ parser.add_argument('--upsample_steps', type=int, default=64, help="num steps up-sampled per ray (only valid when not using --cuda_ray)")
32
+ parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
33
+ parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)")
34
+ parser.add_argument('--albedo_iters', type=int, default=1000, help="training iters that only use albedo shading")
35
+ # model options
36
+ parser.add_argument('--bg_radius', type=float, default=1.4, help="if positive, use a background model at sphere(bg_radius)")
37
+ parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied")
38
+ # network backbone
39
+ parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
40
+ parser.add_argument('--backbone', type=str, default='grid', help="nerf backbone, choose from [grid, tcnn, vanilla]")
41
+ # rendering resolution in training, decrease this if CUDA OOM.
42
+ parser.add_argument('--w', type=int, default=64, help="render width for NeRF in training")
43
+ parser.add_argument('--h', type=int, default=64, help="render height for NeRF in training")
44
+ parser.add_argument('--jitter_pose', action='store_true', help="add jitters to the randomly sampled camera poses")
45
+
46
+ ### dataset options
47
+ parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box(-bound, bound)")
48
+ parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
49
+ parser.add_argument('--min_near', type=float, default=0.1, help="minimum near distance for camera")
50
+ parser.add_argument('--radius_range', type=float, nargs='*', default=[1.0, 1.5], help="training camera radius range")
51
+ parser.add_argument('--fovy_range', type=float, nargs='*', default=[40, 70], help="training camera fovy range")
52
+ parser.add_argument('--dir_text', action='store_true', help="direction-encode the text prompt, by appending front/side/back/overhead view")
53
+ parser.add_argument('--angle_overhead', type=float, default=30, help="[0, angle_overhead] is the overhead region")
54
+ parser.add_argument('--angle_front', type=float, default=60, help="[0, angle_front] is the front region, [180, 180+angle_front] the back region, otherwise the side region.")
55
+
56
+ parser.add_argument('--lambda_entropy', type=float, default=1e-4, help="loss scale for alpha entropy")
57
+ parser.add_argument('--lambda_opacity', type=float, default=0, help="loss scale for alpha value")
58
+ parser.add_argument('--lambda_orient', type=float, default=1e-2, help="loss scale for orientation")
59
+
60
+ ### GUI options
61
+ parser.add_argument('--gui', action='store_true', help="start a GUI")
62
+ parser.add_argument('--W', type=int, default=800, help="GUI width")
63
+ parser.add_argument('--H', type=int, default=800, help="GUI height")
64
+ parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
65
+ parser.add_argument('--fovy', type=float, default=60, help="default GUI camera fovy")
66
+ parser.add_argument('--light_theta', type=float, default=60, help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]")
67
+ parser.add_argument('--light_phi', type=float, default=0, help="default GUI light direction in [0, 360), azimuth")
68
+ parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
69
+
70
+ opt = parser.parse_args()
71
+
72
+ # default to use -O !!!
73
+ opt.fp16 = True
74
+ opt.dir_text = True
75
+ opt.cuda_ray = True
76
+ # opt.lambda_entropy = 1e-4
77
+ # opt.lambda_opacity = 0
78
+
79
+ if opt.backbone == 'vanilla':
80
+ from nerf.network import NeRFNetwork
81
+ elif opt.backbone == 'tcnn':
82
+ from nerf.network_tcnn import NeRFNetwork
83
+ elif opt.backbone == 'grid':
84
+ from nerf.network_grid import NeRFNetwork
85
+ else:
86
+ raise NotImplementedError(f'--backbone {opt.backbone} is not implemented!')
87
+
88
+ print(opt)
89
+
90
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
91
+
92
+ print(f'[INFO] loading models..')
93
+
94
+ if opt.guidance == 'stable-diffusion':
95
+ from nerf.sd import StableDiffusion
96
+ guidance = StableDiffusion(device)
97
+ elif opt.guidance == 'clip':
98
+ from nerf.clip import CLIP
99
+ guidance = CLIP(device)
100
+ else:
101
+ raise NotImplementedError(f'--guidance {opt.guidance} is not implemented.')
102
+
103
+ train_loader = NeRFDataset(opt, device=device, type='train', H=opt.h, W=opt.w, size=100).dataloader()
104
+ valid_loader = NeRFDataset(opt, device=device, type='val', H=opt.H, W=opt.W, size=5).dataloader()
105
+ test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader()
106
+
107
+ print(f'[INFO] everything loaded!')
108
+
109
+ trainer = None
110
+ model = None
111
+
112
+ def reset_params(m):
113
+
114
+ @torch.no_grad()
115
+ def _reset(m: nn.Module):
116
+ reset_parameters = getattr(m, "reset_parameters", None)
117
+ if callable(reset_parameters):
118
+ m.reset_parameters()
119
+
120
+ model.apply(fn=_reset)
121
+
122
+ # define UI
123
+
124
+ with gr.Blocks(css=".gradio-container {max-width: 512px;}") as demo:
125
+
126
+ # title
127
+ gr.Markdown('[Stable-DreamFusion](https://github.com/ashawkey/stable-dreamfusion) Text-to-3D Example')
128
+
129
+ # inputs
130
+ prompt = gr.Textbox(label="Prompt", max_lines=1, value="a DSLR photo of a koi fish")
131
+ iters = gr.Slider(label="Iters", minimum=1000, maximum=20000, value=5000, step=100)
132
+ seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
133
+ button = gr.Button('Generate')
134
+
135
+ # outputs
136
+ image = gr.Image(label="image", visible=True)
137
+ video = gr.Video(label="video", visible=False)
138
+ logs = gr.Textbox(label="logging")
139
+
140
+ # gradio main func
141
+ def submit(text, iters, seed):
142
+
143
+ global trainer, model
144
+
145
+ # seed
146
+ opt.seed = seed
147
+ opt.text = text
148
+ opt.iters = iters
149
+
150
+ seed_everything(seed)
151
+
152
+ # clean up
153
+ if trainer is not None:
154
+ del model
155
+ del trainer
156
+ gc.collect()
157
+ torch.cuda.empty_cache()
158
+ print('[INFO] clean up!')
159
+
160
+ # simply reload everything...
161
+ model = NeRFNetwork(opt)
162
+ optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
163
+ scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
164
+
165
+ trainer = Trainer('df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True)
166
+
167
+ # train (every ep only contain 8 steps, so we can get some vis every ~10s)
168
+ STEPS = 8
169
+ max_epochs = np.ceil(opt.iters / STEPS).astype(np.int32)
170
+
171
+ # we have to get the explicit training loop out here to yield progressive results...
172
+ loader = iter(valid_loader)
173
+
174
+ start_t = time.time()
175
+
176
+ for epoch in range(max_epochs):
177
+
178
+ trainer.train_gui(train_loader, step=STEPS)
179
+
180
+ # manual test and get intermediate results
181
+ try:
182
+ data = next(loader)
183
+ except StopIteration:
184
+ loader = iter(valid_loader)
185
+ data = next(loader)
186
+
187
+ trainer.model.eval()
188
+
189
+ if trainer.ema is not None:
190
+ trainer.ema.store()
191
+ trainer.ema.copy_to()
192
+
193
+ with torch.no_grad():
194
+ with torch.cuda.amp.autocast(enabled=trainer.fp16):
195
+ preds, preds_depth = trainer.test_step(data, perturb=False)
196
+
197
+ if trainer.ema is not None:
198
+ trainer.ema.restore()
199
+
200
+ pred = preds[0].detach().cpu().numpy()
201
+ # pred_depth = preds_depth[0].detach().cpu().numpy()
202
+
203
+ pred = (pred * 255).astype(np.uint8)
204
+
205
+ yield {
206
+ image: gr.update(value=pred, visible=True),
207
+ video: gr.update(visible=False),
208
+ logs: f"training iters: {epoch * STEPS} / {iters}, lr: {trainer.optimizer.param_groups[0]['lr']:.6f}",
209
+ }
210
+
211
+
212
+ # test
213
+ trainer.test(test_loader)
214
+
215
+ results = glob.glob(os.path.join(opt.workspace, 'results', '*rgb*.mp4'))
216
+ assert results is not None, "cannot retrieve results!"
217
+ results.sort(key=lambda x: os.path.getmtime(x)) # sort by mtime
218
+
219
+ end_t = time.time()
220
+
221
+ yield {
222
+ image: gr.update(visible=False),
223
+ video: gr.update(value=results[-1], visible=True),
224
+ logs: f"Generation Finished in {(end_t - start_t)/ 60:.4f} minutes!",
225
+ }
226
+
227
+
228
+ button.click(
229
+ submit,
230
+ [prompt, iters, seed],
231
+ [image, video, logs]
232
+ )
233
+
234
+ # concurrency_count: only allow ONE running progress, else GPU will OOM.
235
+ demo.queue(concurrency_count=1)
236
+
237
+ demo.launch()
main.py CHANGED
@@ -138,7 +138,7 @@ if __name__ == '__main__':
138
  scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
139
  # scheduler = lambda optimizer: optim.lr_scheduler.OneCycleLR(optimizer, max_lr=opt.lr, total_steps=opt.iters, pct_start=0.1)
140
 
141
- trainer = Trainer('df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True)
142
 
143
  if opt.gui:
144
  trainer.train_loader = train_loader # attach dataloader to trainer
 
138
  scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
139
  # scheduler = lambda optimizer: optim.lr_scheduler.OneCycleLR(optimizer, max_lr=opt.lr, total_steps=opt.iters, pct_start=0.1)
140
 
141
+ trainer = Trainer('df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=None, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True)
142
 
143
  if opt.gui:
144
  trainer.train_loader = train_loader # attach dataloader to trainer
nerf/utils.py CHANGED
@@ -195,9 +195,6 @@ class Trainer(object):
195
  self.scheduler_update_every_step = scheduler_update_every_step
196
  self.device = device if device is not None else torch.device(f'cuda:{local_rank}' if torch.cuda.is_available() else 'cpu')
197
  self.console = Console()
198
-
199
- # text prompt
200
- ref_text = self.opt.text
201
 
202
  model.to(self.device)
203
  if self.world_size > 1:
@@ -208,20 +205,13 @@ class Trainer(object):
208
  # guide model
209
  self.guidance = guidance
210
 
 
211
  if self.guidance is not None:
212
- assert ref_text is not None, 'Training must provide a text prompt!'
213
-
214
  for p in self.guidance.parameters():
215
  p.requires_grad = False
216
 
217
- if not self.opt.dir_text:
218
- self.text_z = self.guidance.get_text_embeds([ref_text])
219
- else:
220
- self.text_z = []
221
- for d in ['front', 'side', 'back', 'side', 'overhead', 'bottom']:
222
- text = f"{ref_text}, {d} view"
223
- text_z = self.guidance.get_text_embeds([text])
224
- self.text_z.append(text_z)
225
 
226
  else:
227
  self.text_z = None
@@ -257,7 +247,7 @@ class Trainer(object):
257
  "results": [], # metrics[0], or valid_loss
258
  "checkpoints": [], # record path of saved ckpt, to automatically remove old ckpt
259
  "best_result": None,
260
- }
261
 
262
  # auto fix
263
  if len(metrics) == 0 or self.use_loss_as_metric:
@@ -297,6 +287,23 @@ class Trainer(object):
297
  self.log(f"[INFO] Loading {self.use_checkpoint} ...")
298
  self.load_checkpoint(self.use_checkpoint)
299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300
  def __del__(self):
301
  if self.log_ptr:
302
  self.log_ptr.close()
@@ -447,6 +454,9 @@ class Trainer(object):
447
  ### ------------------------------
448
 
449
  def train(self, train_loader, valid_loader, max_epochs):
 
 
 
450
  if self.use_tensorboardX and self.local_rank == 0:
451
  self.writer = tensorboardX.SummaryWriter(os.path.join(self.workspace, "run", self.name))
452
 
 
195
  self.scheduler_update_every_step = scheduler_update_every_step
196
  self.device = device if device is not None else torch.device(f'cuda:{local_rank}' if torch.cuda.is_available() else 'cpu')
197
  self.console = Console()
 
 
 
198
 
199
  model.to(self.device)
200
  if self.world_size > 1:
 
205
  # guide model
206
  self.guidance = guidance
207
 
208
+ # text prompt
209
  if self.guidance is not None:
210
+
 
211
  for p in self.guidance.parameters():
212
  p.requires_grad = False
213
 
214
+ self.prepare_text_embeddings()
 
 
 
 
 
 
 
215
 
216
  else:
217
  self.text_z = None
 
247
  "results": [], # metrics[0], or valid_loss
248
  "checkpoints": [], # record path of saved ckpt, to automatically remove old ckpt
249
  "best_result": None,
250
+ }
251
 
252
  # auto fix
253
  if len(metrics) == 0 or self.use_loss_as_metric:
 
287
  self.log(f"[INFO] Loading {self.use_checkpoint} ...")
288
  self.load_checkpoint(self.use_checkpoint)
289
 
290
+ # calculate the text embs.
291
+ def prepare_text_embeddings(self):
292
+
293
+ if self.opt.text is None:
294
+ self.log(f"[WARN] text prompt is not provided.")
295
+ self.text_z = None
296
+ return
297
+
298
+ if not self.opt.dir_text:
299
+ self.text_z = self.guidance.get_text_embeds([self.opt.text])
300
+ else:
301
+ self.text_z = []
302
+ for d in ['front', 'side', 'back', 'side', 'overhead', 'bottom']:
303
+ text = f"{self.opt.text}, {d} view"
304
+ text_z = self.guidance.get_text_embeds([text])
305
+ self.text_z.append(text_z)
306
+
307
  def __del__(self):
308
  if self.log_ptr:
309
  self.log_ptr.close()
 
454
  ### ------------------------------
455
 
456
  def train(self, train_loader, valid_loader, max_epochs):
457
+
458
+ assert self.text_z is not None, 'Training must provide a text prompt!'
459
+
460
  if self.use_tensorboardX and self.local_rank == 0:
461
  self.writer = tensorboardX.SummaryWriter(os.path.join(self.workspace, "run", self.name))
462
 
readme.md CHANGED
@@ -86,6 +86,12 @@ python main.py --text "a hamburger" --workspace trial -O --albedo_iters 10000 #
86
  # 2. use a smaller density regularization weight:
87
  python main.py --text "a hamburger" --workspace trial -O --lambda_entropy 1e-5
88
 
 
 
 
 
 
 
89
  ## after the training is finished:
90
  # test (exporting 360 video)
91
  python main.py --workspace trial -O --test
 
86
  # 2. use a smaller density regularization weight:
87
  python main.py --text "a hamburger" --workspace trial -O --lambda_entropy 1e-5
88
 
89
+ # you can also train in a GUI to visualize the training progress:
90
+ python main.py --text "a hamburger" --workspace trial -O --gui
91
+
92
+ # A Gradio GUI is also possible (with less options):
93
+ python gradio_app.py # open in web browser
94
+
95
  ## after the training is finished:
96
  # test (exporting 360 video)
97
  python main.py --workspace trial -O --test