add gradio example
Browse files- gradio_app.py +237 -0
- main.py +1 -1
- nerf/utils.py +24 -14
- readme.md +6 -0
gradio_app.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import argparse
|
3 |
+
|
4 |
+
from nerf.provider import NeRFDataset
|
5 |
+
from nerf.utils import *
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import gc
|
9 |
+
|
10 |
+
print(f'[INFO] loading options..')
|
11 |
+
|
12 |
+
# fake config object, this should not be used in CMD, only allow change from gradio UI.
|
13 |
+
parser = argparse.ArgumentParser()
|
14 |
+
parser.add_argument('--text', default=None, help="text prompt")
|
15 |
+
# parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --dir_text")
|
16 |
+
# parser.add_argument('-O2', action='store_true', help="equals --fp16 --dir_text")
|
17 |
+
parser.add_argument('--test', action='store_true', help="test mode")
|
18 |
+
parser.add_argument('--save_mesh', action='store_true', help="export an obj mesh with texture")
|
19 |
+
parser.add_argument('--eval_interval', type=int, default=10, help="evaluate on the valid set every interval epochs")
|
20 |
+
parser.add_argument('--workspace', type=str, default='trial_gradio')
|
21 |
+
parser.add_argument('--guidance', type=str, default='stable-diffusion', help='choose from [stable-diffusion, clip]')
|
22 |
+
parser.add_argument('--seed', type=int, default=0)
|
23 |
+
|
24 |
+
### training options
|
25 |
+
parser.add_argument('--iters', type=int, default=10000, help="training iters")
|
26 |
+
parser.add_argument('--lr', type=float, default=1e-3, help="initial learning rate")
|
27 |
+
parser.add_argument('--ckpt', type=str, default='latest')
|
28 |
+
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
|
29 |
+
parser.add_argument('--max_steps', type=int, default=1024, help="max num steps sampled per ray (only valid when using --cuda_ray)")
|
30 |
+
parser.add_argument('--num_steps', type=int, default=64, help="num steps sampled per ray (only valid when not using --cuda_ray)")
|
31 |
+
parser.add_argument('--upsample_steps', type=int, default=64, help="num steps up-sampled per ray (only valid when not using --cuda_ray)")
|
32 |
+
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
|
33 |
+
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)")
|
34 |
+
parser.add_argument('--albedo_iters', type=int, default=1000, help="training iters that only use albedo shading")
|
35 |
+
# model options
|
36 |
+
parser.add_argument('--bg_radius', type=float, default=1.4, help="if positive, use a background model at sphere(bg_radius)")
|
37 |
+
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied")
|
38 |
+
# network backbone
|
39 |
+
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
|
40 |
+
parser.add_argument('--backbone', type=str, default='grid', help="nerf backbone, choose from [grid, tcnn, vanilla]")
|
41 |
+
# rendering resolution in training, decrease this if CUDA OOM.
|
42 |
+
parser.add_argument('--w', type=int, default=64, help="render width for NeRF in training")
|
43 |
+
parser.add_argument('--h', type=int, default=64, help="render height for NeRF in training")
|
44 |
+
parser.add_argument('--jitter_pose', action='store_true', help="add jitters to the randomly sampled camera poses")
|
45 |
+
|
46 |
+
### dataset options
|
47 |
+
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box(-bound, bound)")
|
48 |
+
parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
|
49 |
+
parser.add_argument('--min_near', type=float, default=0.1, help="minimum near distance for camera")
|
50 |
+
parser.add_argument('--radius_range', type=float, nargs='*', default=[1.0, 1.5], help="training camera radius range")
|
51 |
+
parser.add_argument('--fovy_range', type=float, nargs='*', default=[40, 70], help="training camera fovy range")
|
52 |
+
parser.add_argument('--dir_text', action='store_true', help="direction-encode the text prompt, by appending front/side/back/overhead view")
|
53 |
+
parser.add_argument('--angle_overhead', type=float, default=30, help="[0, angle_overhead] is the overhead region")
|
54 |
+
parser.add_argument('--angle_front', type=float, default=60, help="[0, angle_front] is the front region, [180, 180+angle_front] the back region, otherwise the side region.")
|
55 |
+
|
56 |
+
parser.add_argument('--lambda_entropy', type=float, default=1e-4, help="loss scale for alpha entropy")
|
57 |
+
parser.add_argument('--lambda_opacity', type=float, default=0, help="loss scale for alpha value")
|
58 |
+
parser.add_argument('--lambda_orient', type=float, default=1e-2, help="loss scale for orientation")
|
59 |
+
|
60 |
+
### GUI options
|
61 |
+
parser.add_argument('--gui', action='store_true', help="start a GUI")
|
62 |
+
parser.add_argument('--W', type=int, default=800, help="GUI width")
|
63 |
+
parser.add_argument('--H', type=int, default=800, help="GUI height")
|
64 |
+
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
|
65 |
+
parser.add_argument('--fovy', type=float, default=60, help="default GUI camera fovy")
|
66 |
+
parser.add_argument('--light_theta', type=float, default=60, help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]")
|
67 |
+
parser.add_argument('--light_phi', type=float, default=0, help="default GUI light direction in [0, 360), azimuth")
|
68 |
+
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
|
69 |
+
|
70 |
+
opt = parser.parse_args()
|
71 |
+
|
72 |
+
# default to use -O !!!
|
73 |
+
opt.fp16 = True
|
74 |
+
opt.dir_text = True
|
75 |
+
opt.cuda_ray = True
|
76 |
+
# opt.lambda_entropy = 1e-4
|
77 |
+
# opt.lambda_opacity = 0
|
78 |
+
|
79 |
+
if opt.backbone == 'vanilla':
|
80 |
+
from nerf.network import NeRFNetwork
|
81 |
+
elif opt.backbone == 'tcnn':
|
82 |
+
from nerf.network_tcnn import NeRFNetwork
|
83 |
+
elif opt.backbone == 'grid':
|
84 |
+
from nerf.network_grid import NeRFNetwork
|
85 |
+
else:
|
86 |
+
raise NotImplementedError(f'--backbone {opt.backbone} is not implemented!')
|
87 |
+
|
88 |
+
print(opt)
|
89 |
+
|
90 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
91 |
+
|
92 |
+
print(f'[INFO] loading models..')
|
93 |
+
|
94 |
+
if opt.guidance == 'stable-diffusion':
|
95 |
+
from nerf.sd import StableDiffusion
|
96 |
+
guidance = StableDiffusion(device)
|
97 |
+
elif opt.guidance == 'clip':
|
98 |
+
from nerf.clip import CLIP
|
99 |
+
guidance = CLIP(device)
|
100 |
+
else:
|
101 |
+
raise NotImplementedError(f'--guidance {opt.guidance} is not implemented.')
|
102 |
+
|
103 |
+
train_loader = NeRFDataset(opt, device=device, type='train', H=opt.h, W=opt.w, size=100).dataloader()
|
104 |
+
valid_loader = NeRFDataset(opt, device=device, type='val', H=opt.H, W=opt.W, size=5).dataloader()
|
105 |
+
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader()
|
106 |
+
|
107 |
+
print(f'[INFO] everything loaded!')
|
108 |
+
|
109 |
+
trainer = None
|
110 |
+
model = None
|
111 |
+
|
112 |
+
def reset_params(m):
|
113 |
+
|
114 |
+
@torch.no_grad()
|
115 |
+
def _reset(m: nn.Module):
|
116 |
+
reset_parameters = getattr(m, "reset_parameters", None)
|
117 |
+
if callable(reset_parameters):
|
118 |
+
m.reset_parameters()
|
119 |
+
|
120 |
+
model.apply(fn=_reset)
|
121 |
+
|
122 |
+
# define UI
|
123 |
+
|
124 |
+
with gr.Blocks(css=".gradio-container {max-width: 512px;}") as demo:
|
125 |
+
|
126 |
+
# title
|
127 |
+
gr.Markdown('[Stable-DreamFusion](https://github.com/ashawkey/stable-dreamfusion) Text-to-3D Example')
|
128 |
+
|
129 |
+
# inputs
|
130 |
+
prompt = gr.Textbox(label="Prompt", max_lines=1, value="a DSLR photo of a koi fish")
|
131 |
+
iters = gr.Slider(label="Iters", minimum=1000, maximum=20000, value=5000, step=100)
|
132 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
|
133 |
+
button = gr.Button('Generate')
|
134 |
+
|
135 |
+
# outputs
|
136 |
+
image = gr.Image(label="image", visible=True)
|
137 |
+
video = gr.Video(label="video", visible=False)
|
138 |
+
logs = gr.Textbox(label="logging")
|
139 |
+
|
140 |
+
# gradio main func
|
141 |
+
def submit(text, iters, seed):
|
142 |
+
|
143 |
+
global trainer, model
|
144 |
+
|
145 |
+
# seed
|
146 |
+
opt.seed = seed
|
147 |
+
opt.text = text
|
148 |
+
opt.iters = iters
|
149 |
+
|
150 |
+
seed_everything(seed)
|
151 |
+
|
152 |
+
# clean up
|
153 |
+
if trainer is not None:
|
154 |
+
del model
|
155 |
+
del trainer
|
156 |
+
gc.collect()
|
157 |
+
torch.cuda.empty_cache()
|
158 |
+
print('[INFO] clean up!')
|
159 |
+
|
160 |
+
# simply reload everything...
|
161 |
+
model = NeRFNetwork(opt)
|
162 |
+
optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
|
163 |
+
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
|
164 |
+
|
165 |
+
trainer = Trainer('df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True)
|
166 |
+
|
167 |
+
# train (every ep only contain 8 steps, so we can get some vis every ~10s)
|
168 |
+
STEPS = 8
|
169 |
+
max_epochs = np.ceil(opt.iters / STEPS).astype(np.int32)
|
170 |
+
|
171 |
+
# we have to get the explicit training loop out here to yield progressive results...
|
172 |
+
loader = iter(valid_loader)
|
173 |
+
|
174 |
+
start_t = time.time()
|
175 |
+
|
176 |
+
for epoch in range(max_epochs):
|
177 |
+
|
178 |
+
trainer.train_gui(train_loader, step=STEPS)
|
179 |
+
|
180 |
+
# manual test and get intermediate results
|
181 |
+
try:
|
182 |
+
data = next(loader)
|
183 |
+
except StopIteration:
|
184 |
+
loader = iter(valid_loader)
|
185 |
+
data = next(loader)
|
186 |
+
|
187 |
+
trainer.model.eval()
|
188 |
+
|
189 |
+
if trainer.ema is not None:
|
190 |
+
trainer.ema.store()
|
191 |
+
trainer.ema.copy_to()
|
192 |
+
|
193 |
+
with torch.no_grad():
|
194 |
+
with torch.cuda.amp.autocast(enabled=trainer.fp16):
|
195 |
+
preds, preds_depth = trainer.test_step(data, perturb=False)
|
196 |
+
|
197 |
+
if trainer.ema is not None:
|
198 |
+
trainer.ema.restore()
|
199 |
+
|
200 |
+
pred = preds[0].detach().cpu().numpy()
|
201 |
+
# pred_depth = preds_depth[0].detach().cpu().numpy()
|
202 |
+
|
203 |
+
pred = (pred * 255).astype(np.uint8)
|
204 |
+
|
205 |
+
yield {
|
206 |
+
image: gr.update(value=pred, visible=True),
|
207 |
+
video: gr.update(visible=False),
|
208 |
+
logs: f"training iters: {epoch * STEPS} / {iters}, lr: {trainer.optimizer.param_groups[0]['lr']:.6f}",
|
209 |
+
}
|
210 |
+
|
211 |
+
|
212 |
+
# test
|
213 |
+
trainer.test(test_loader)
|
214 |
+
|
215 |
+
results = glob.glob(os.path.join(opt.workspace, 'results', '*rgb*.mp4'))
|
216 |
+
assert results is not None, "cannot retrieve results!"
|
217 |
+
results.sort(key=lambda x: os.path.getmtime(x)) # sort by mtime
|
218 |
+
|
219 |
+
end_t = time.time()
|
220 |
+
|
221 |
+
yield {
|
222 |
+
image: gr.update(visible=False),
|
223 |
+
video: gr.update(value=results[-1], visible=True),
|
224 |
+
logs: f"Generation Finished in {(end_t - start_t)/ 60:.4f} minutes!",
|
225 |
+
}
|
226 |
+
|
227 |
+
|
228 |
+
button.click(
|
229 |
+
submit,
|
230 |
+
[prompt, iters, seed],
|
231 |
+
[image, video, logs]
|
232 |
+
)
|
233 |
+
|
234 |
+
# concurrency_count: only allow ONE running progress, else GPU will OOM.
|
235 |
+
demo.queue(concurrency_count=1)
|
236 |
+
|
237 |
+
demo.launch()
|
main.py
CHANGED
@@ -138,7 +138,7 @@ if __name__ == '__main__':
|
|
138 |
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
|
139 |
# scheduler = lambda optimizer: optim.lr_scheduler.OneCycleLR(optimizer, max_lr=opt.lr, total_steps=opt.iters, pct_start=0.1)
|
140 |
|
141 |
-
trainer = Trainer('df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=
|
142 |
|
143 |
if opt.gui:
|
144 |
trainer.train_loader = train_loader # attach dataloader to trainer
|
|
|
138 |
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
|
139 |
# scheduler = lambda optimizer: optim.lr_scheduler.OneCycleLR(optimizer, max_lr=opt.lr, total_steps=opt.iters, pct_start=0.1)
|
140 |
|
141 |
+
trainer = Trainer('df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=None, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True)
|
142 |
|
143 |
if opt.gui:
|
144 |
trainer.train_loader = train_loader # attach dataloader to trainer
|
nerf/utils.py
CHANGED
@@ -195,9 +195,6 @@ class Trainer(object):
|
|
195 |
self.scheduler_update_every_step = scheduler_update_every_step
|
196 |
self.device = device if device is not None else torch.device(f'cuda:{local_rank}' if torch.cuda.is_available() else 'cpu')
|
197 |
self.console = Console()
|
198 |
-
|
199 |
-
# text prompt
|
200 |
-
ref_text = self.opt.text
|
201 |
|
202 |
model.to(self.device)
|
203 |
if self.world_size > 1:
|
@@ -208,20 +205,13 @@ class Trainer(object):
|
|
208 |
# guide model
|
209 |
self.guidance = guidance
|
210 |
|
|
|
211 |
if self.guidance is not None:
|
212 |
-
|
213 |
-
|
214 |
for p in self.guidance.parameters():
|
215 |
p.requires_grad = False
|
216 |
|
217 |
-
|
218 |
-
self.text_z = self.guidance.get_text_embeds([ref_text])
|
219 |
-
else:
|
220 |
-
self.text_z = []
|
221 |
-
for d in ['front', 'side', 'back', 'side', 'overhead', 'bottom']:
|
222 |
-
text = f"{ref_text}, {d} view"
|
223 |
-
text_z = self.guidance.get_text_embeds([text])
|
224 |
-
self.text_z.append(text_z)
|
225 |
|
226 |
else:
|
227 |
self.text_z = None
|
@@ -257,7 +247,7 @@ class Trainer(object):
|
|
257 |
"results": [], # metrics[0], or valid_loss
|
258 |
"checkpoints": [], # record path of saved ckpt, to automatically remove old ckpt
|
259 |
"best_result": None,
|
260 |
-
|
261 |
|
262 |
# auto fix
|
263 |
if len(metrics) == 0 or self.use_loss_as_metric:
|
@@ -297,6 +287,23 @@ class Trainer(object):
|
|
297 |
self.log(f"[INFO] Loading {self.use_checkpoint} ...")
|
298 |
self.load_checkpoint(self.use_checkpoint)
|
299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
def __del__(self):
|
301 |
if self.log_ptr:
|
302 |
self.log_ptr.close()
|
@@ -447,6 +454,9 @@ class Trainer(object):
|
|
447 |
### ------------------------------
|
448 |
|
449 |
def train(self, train_loader, valid_loader, max_epochs):
|
|
|
|
|
|
|
450 |
if self.use_tensorboardX and self.local_rank == 0:
|
451 |
self.writer = tensorboardX.SummaryWriter(os.path.join(self.workspace, "run", self.name))
|
452 |
|
|
|
195 |
self.scheduler_update_every_step = scheduler_update_every_step
|
196 |
self.device = device if device is not None else torch.device(f'cuda:{local_rank}' if torch.cuda.is_available() else 'cpu')
|
197 |
self.console = Console()
|
|
|
|
|
|
|
198 |
|
199 |
model.to(self.device)
|
200 |
if self.world_size > 1:
|
|
|
205 |
# guide model
|
206 |
self.guidance = guidance
|
207 |
|
208 |
+
# text prompt
|
209 |
if self.guidance is not None:
|
210 |
+
|
|
|
211 |
for p in self.guidance.parameters():
|
212 |
p.requires_grad = False
|
213 |
|
214 |
+
self.prepare_text_embeddings()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
else:
|
217 |
self.text_z = None
|
|
|
247 |
"results": [], # metrics[0], or valid_loss
|
248 |
"checkpoints": [], # record path of saved ckpt, to automatically remove old ckpt
|
249 |
"best_result": None,
|
250 |
+
}
|
251 |
|
252 |
# auto fix
|
253 |
if len(metrics) == 0 or self.use_loss_as_metric:
|
|
|
287 |
self.log(f"[INFO] Loading {self.use_checkpoint} ...")
|
288 |
self.load_checkpoint(self.use_checkpoint)
|
289 |
|
290 |
+
# calculate the text embs.
|
291 |
+
def prepare_text_embeddings(self):
|
292 |
+
|
293 |
+
if self.opt.text is None:
|
294 |
+
self.log(f"[WARN] text prompt is not provided.")
|
295 |
+
self.text_z = None
|
296 |
+
return
|
297 |
+
|
298 |
+
if not self.opt.dir_text:
|
299 |
+
self.text_z = self.guidance.get_text_embeds([self.opt.text])
|
300 |
+
else:
|
301 |
+
self.text_z = []
|
302 |
+
for d in ['front', 'side', 'back', 'side', 'overhead', 'bottom']:
|
303 |
+
text = f"{self.opt.text}, {d} view"
|
304 |
+
text_z = self.guidance.get_text_embeds([text])
|
305 |
+
self.text_z.append(text_z)
|
306 |
+
|
307 |
def __del__(self):
|
308 |
if self.log_ptr:
|
309 |
self.log_ptr.close()
|
|
|
454 |
### ------------------------------
|
455 |
|
456 |
def train(self, train_loader, valid_loader, max_epochs):
|
457 |
+
|
458 |
+
assert self.text_z is not None, 'Training must provide a text prompt!'
|
459 |
+
|
460 |
if self.use_tensorboardX and self.local_rank == 0:
|
461 |
self.writer = tensorboardX.SummaryWriter(os.path.join(self.workspace, "run", self.name))
|
462 |
|
readme.md
CHANGED
@@ -86,6 +86,12 @@ python main.py --text "a hamburger" --workspace trial -O --albedo_iters 10000 #
|
|
86 |
# 2. use a smaller density regularization weight:
|
87 |
python main.py --text "a hamburger" --workspace trial -O --lambda_entropy 1e-5
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
## after the training is finished:
|
90 |
# test (exporting 360 video)
|
91 |
python main.py --workspace trial -O --test
|
|
|
86 |
# 2. use a smaller density regularization weight:
|
87 |
python main.py --text "a hamburger" --workspace trial -O --lambda_entropy 1e-5
|
88 |
|
89 |
+
# you can also train in a GUI to visualize the training progress:
|
90 |
+
python main.py --text "a hamburger" --workspace trial -O --gui
|
91 |
+
|
92 |
+
# A Gradio GUI is also possible (with less options):
|
93 |
+
python gradio_app.py # open in web browser
|
94 |
+
|
95 |
## after the training is finished:
|
96 |
# test (exporting 360 video)
|
97 |
python main.py --workspace trial -O --test
|