|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
def get_encoder(encoding, input_dim=3, |
|
multires=6, |
|
degree=4, |
|
num_levels=16, level_dim=2, base_resolution=16, log2_hashmap_size=19, desired_resolution=2048, align_corners=False, |
|
**kwargs): |
|
|
|
if encoding == 'None': |
|
return lambda x, **kwargs: x, input_dim |
|
|
|
elif encoding == 'frequency': |
|
from freqencoder import FreqEncoder |
|
encoder = FreqEncoder(input_dim=input_dim, degree=multires) |
|
|
|
elif encoding == 'sphere_harmonics': |
|
from shencoder import SHEncoder |
|
encoder = SHEncoder(input_dim=input_dim, degree=degree) |
|
|
|
elif encoding == 'hashgrid': |
|
from gridencoder import GridEncoder |
|
encoder = GridEncoder(input_dim=input_dim, num_levels=num_levels, level_dim=level_dim, base_resolution=base_resolution, log2_hashmap_size=log2_hashmap_size, desired_resolution=desired_resolution, gridtype='hash', align_corners=align_corners) |
|
|
|
elif encoding == 'tiledgrid': |
|
from gridencoder import GridEncoder |
|
encoder = GridEncoder(input_dim=input_dim, num_levels=num_levels, level_dim=level_dim, base_resolution=base_resolution, log2_hashmap_size=log2_hashmap_size, desired_resolution=desired_resolution, gridtype='tiled', align_corners=align_corners) |
|
|
|
else: |
|
raise NotImplementedError('Unknown encoding mode, choose from [None, frequency, sphere_harmonics, hashgrid, tiledgrid]') |
|
|
|
return encoder, encoder.output_dim |