|
#include <stdint.h> |
|
|
|
#include <cuda.h> |
|
#include <cuda_fp16.h> |
|
#include <cuda_runtime.h> |
|
|
|
#include <ATen/cuda/CUDAContext.h> |
|
#include <torch/torch.h> |
|
|
|
#include <algorithm> |
|
#include <stdexcept> |
|
|
|
#include <cstdio> |
|
|
|
|
|
#define CHECK_CUDA(x) TORCH_CHECK(x.device().is_cuda(), #x " must be a CUDA tensor") |
|
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be a contiguous tensor") |
|
#define CHECK_IS_INT(x) TORCH_CHECK(x.scalar_type() == at::ScalarType::Int, #x " must be an int tensor") |
|
#define CHECK_IS_FLOATING(x) TORCH_CHECK(x.scalar_type() == at::ScalarType::Float || x.scalar_type() == at::ScalarType::Half || x.scalar_type() == at::ScalarType::Double, #x " must be a floating tensor") |
|
|
|
inline constexpr __device__ float PI() { return 3.141592653589793f; } |
|
|
|
template <typename T> |
|
__host__ __device__ T div_round_up(T val, T divisor) { |
|
return (val + divisor - 1) / divisor; |
|
} |
|
|
|
|
|
|
|
__global__ void kernel_freq( |
|
const float * __restrict__ inputs, |
|
uint32_t B, uint32_t D, uint32_t deg, uint32_t C, |
|
float * outputs |
|
) { |
|
|
|
const uint32_t t = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (t >= B * C) return; |
|
|
|
|
|
const uint32_t b = t / C; |
|
const uint32_t c = t - b * C; |
|
|
|
|
|
inputs += b * D; |
|
outputs += t; |
|
|
|
|
|
if (c < D) { |
|
outputs[0] = inputs[c]; |
|
|
|
} else { |
|
const uint32_t col = c / D - 1; |
|
const uint32_t d = c % D; |
|
const uint32_t freq = col / 2; |
|
const float phase_shift = (col % 2) * (PI() / 2); |
|
outputs[0] = __sinf(scalbnf(inputs[d], freq) + phase_shift); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
__global__ void kernel_freq_backward( |
|
const float * __restrict__ grad, |
|
const float * __restrict__ outputs, |
|
uint32_t B, uint32_t D, uint32_t deg, uint32_t C, |
|
float * grad_inputs |
|
) { |
|
|
|
const uint32_t t = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (t >= B * D) return; |
|
|
|
const uint32_t b = t / D; |
|
const uint32_t d = t - b * D; |
|
|
|
|
|
grad += b * C; |
|
outputs += b * C; |
|
grad_inputs += t; |
|
|
|
|
|
float result = grad[d]; |
|
grad += D; |
|
outputs += D; |
|
|
|
for (uint32_t f = 0; f < deg; f++) { |
|
result += scalbnf(1.0f, f) * (grad[d] * outputs[D + d] - grad[D + d] * outputs[d]); |
|
grad += 2 * D; |
|
outputs += 2 * D; |
|
} |
|
|
|
|
|
grad_inputs[0] = result; |
|
} |
|
|
|
|
|
void freq_encode_forward(at::Tensor inputs, const uint32_t B, const uint32_t D, const uint32_t deg, const uint32_t C, at::Tensor outputs) { |
|
CHECK_CUDA(inputs); |
|
CHECK_CUDA(outputs); |
|
|
|
CHECK_CONTIGUOUS(inputs); |
|
CHECK_CONTIGUOUS(outputs); |
|
|
|
CHECK_IS_FLOATING(inputs); |
|
CHECK_IS_FLOATING(outputs); |
|
|
|
static constexpr uint32_t N_THREADS = 128; |
|
|
|
kernel_freq<<<div_round_up(B * C, N_THREADS), N_THREADS>>>(inputs.data_ptr<float>(), B, D, deg, C, outputs.data_ptr<float>()); |
|
} |
|
|
|
|
|
void freq_encode_backward(at::Tensor grad, at::Tensor outputs, const uint32_t B, const uint32_t D, const uint32_t deg, const uint32_t C, at::Tensor grad_inputs) { |
|
CHECK_CUDA(grad); |
|
CHECK_CUDA(outputs); |
|
CHECK_CUDA(grad_inputs); |
|
|
|
CHECK_CONTIGUOUS(grad); |
|
CHECK_CONTIGUOUS(outputs); |
|
CHECK_CONTIGUOUS(grad_inputs); |
|
|
|
CHECK_IS_FLOATING(grad); |
|
CHECK_IS_FLOATING(outputs); |
|
CHECK_IS_FLOATING(grad_inputs); |
|
|
|
static constexpr uint32_t N_THREADS = 128; |
|
|
|
kernel_freq_backward<<<div_round_up(B * D, N_THREADS), N_THREADS>>>(grad.data_ptr<float>(), outputs.data_ptr<float>(), B, D, deg, C, grad_inputs.data_ptr<float>()); |
|
} |