|
import numpy as np |
|
import time |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.autograd import Function |
|
from torch.cuda.amp import custom_bwd, custom_fwd |
|
|
|
try: |
|
import _raymarching as _backend |
|
except ImportError: |
|
from .backend import _backend |
|
|
|
|
|
|
|
|
|
|
|
|
|
class _near_far_from_aabb(Function): |
|
@staticmethod |
|
@custom_fwd(cast_inputs=torch.float32) |
|
def forward(ctx, rays_o, rays_d, aabb, min_near=0.2): |
|
''' near_far_from_aabb, CUDA implementation |
|
Calculate rays' intersection time (near and far) with aabb |
|
Args: |
|
rays_o: float, [N, 3] |
|
rays_d: float, [N, 3] |
|
aabb: float, [6], (xmin, ymin, zmin, xmax, ymax, zmax) |
|
min_near: float, scalar |
|
Returns: |
|
nears: float, [N] |
|
fars: float, [N] |
|
''' |
|
if not rays_o.is_cuda: rays_o = rays_o.cuda() |
|
if not rays_d.is_cuda: rays_d = rays_d.cuda() |
|
|
|
rays_o = rays_o.contiguous().view(-1, 3) |
|
rays_d = rays_d.contiguous().view(-1, 3) |
|
|
|
N = rays_o.shape[0] |
|
|
|
nears = torch.empty(N, dtype=rays_o.dtype, device=rays_o.device) |
|
fars = torch.empty(N, dtype=rays_o.dtype, device=rays_o.device) |
|
|
|
_backend.near_far_from_aabb(rays_o, rays_d, aabb, N, min_near, nears, fars) |
|
|
|
return nears, fars |
|
|
|
near_far_from_aabb = _near_far_from_aabb.apply |
|
|
|
|
|
class _sph_from_ray(Function): |
|
@staticmethod |
|
@custom_fwd(cast_inputs=torch.float32) |
|
def forward(ctx, rays_o, rays_d, radius): |
|
''' sph_from_ray, CUDA implementation |
|
get spherical coordinate on the background sphere from rays. |
|
Assume rays_o are inside the Sphere(radius). |
|
Args: |
|
rays_o: [N, 3] |
|
rays_d: [N, 3] |
|
radius: scalar, float |
|
Return: |
|
coords: [N, 2], in [-1, 1], theta and phi on a sphere. (further-surface) |
|
''' |
|
if not rays_o.is_cuda: rays_o = rays_o.cuda() |
|
if not rays_d.is_cuda: rays_d = rays_d.cuda() |
|
|
|
rays_o = rays_o.contiguous().view(-1, 3) |
|
rays_d = rays_d.contiguous().view(-1, 3) |
|
|
|
N = rays_o.shape[0] |
|
|
|
coords = torch.empty(N, 2, dtype=rays_o.dtype, device=rays_o.device) |
|
|
|
_backend.sph_from_ray(rays_o, rays_d, radius, N, coords) |
|
|
|
return coords |
|
|
|
sph_from_ray = _sph_from_ray.apply |
|
|
|
|
|
class _morton3D(Function): |
|
@staticmethod |
|
def forward(ctx, coords): |
|
''' morton3D, CUDA implementation |
|
Args: |
|
coords: [N, 3], int32, in [0, 128) (for some reason there is no uint32 tensor in torch...) |
|
TODO: check if the coord range is valid! (current 128 is safe) |
|
Returns: |
|
indices: [N], int32, in [0, 128^3) |
|
|
|
''' |
|
if not coords.is_cuda: coords = coords.cuda() |
|
|
|
N = coords.shape[0] |
|
|
|
indices = torch.empty(N, dtype=torch.int32, device=coords.device) |
|
|
|
_backend.morton3D(coords.int(), N, indices) |
|
|
|
return indices |
|
|
|
morton3D = _morton3D.apply |
|
|
|
class _morton3D_invert(Function): |
|
@staticmethod |
|
def forward(ctx, indices): |
|
''' morton3D_invert, CUDA implementation |
|
Args: |
|
indices: [N], int32, in [0, 128^3) |
|
Returns: |
|
coords: [N, 3], int32, in [0, 128) |
|
|
|
''' |
|
if not indices.is_cuda: indices = indices.cuda() |
|
|
|
N = indices.shape[0] |
|
|
|
coords = torch.empty(N, 3, dtype=torch.int32, device=indices.device) |
|
|
|
_backend.morton3D_invert(indices.int(), N, coords) |
|
|
|
return coords |
|
|
|
morton3D_invert = _morton3D_invert.apply |
|
|
|
|
|
class _packbits(Function): |
|
@staticmethod |
|
@custom_fwd(cast_inputs=torch.float32) |
|
def forward(ctx, grid, thresh, bitfield=None): |
|
''' packbits, CUDA implementation |
|
Pack up the density grid into a bit field to accelerate ray marching. |
|
Args: |
|
grid: float, [C, H * H * H], assume H % 2 == 0 |
|
thresh: float, threshold |
|
Returns: |
|
bitfield: uint8, [C, H * H * H / 8] |
|
''' |
|
if not grid.is_cuda: grid = grid.cuda() |
|
grid = grid.contiguous() |
|
|
|
C = grid.shape[0] |
|
H3 = grid.shape[1] |
|
N = C * H3 // 8 |
|
|
|
if bitfield is None: |
|
bitfield = torch.empty(N, dtype=torch.uint8, device=grid.device) |
|
|
|
_backend.packbits(grid, N, thresh, bitfield) |
|
|
|
return bitfield |
|
|
|
packbits = _packbits.apply |
|
|
|
|
|
|
|
|
|
|
|
class _march_rays_train(Function): |
|
@staticmethod |
|
@custom_fwd(cast_inputs=torch.float32) |
|
def forward(ctx, rays_o, rays_d, bound, density_bitfield, C, H, nears, fars, step_counter=None, mean_count=-1, perturb=False, align=-1, force_all_rays=False, dt_gamma=0, max_steps=1024): |
|
''' march rays to generate points (forward only) |
|
Args: |
|
rays_o/d: float, [N, 3] |
|
bound: float, scalar |
|
density_bitfield: uint8: [CHHH // 8] |
|
C: int |
|
H: int |
|
nears/fars: float, [N] |
|
step_counter: int32, (2), used to count the actual number of generated points. |
|
mean_count: int32, estimated mean steps to accelerate training. (but will randomly drop rays if the actual point count exceeded this threshold.) |
|
perturb: bool |
|
align: int, pad output so its size is dividable by align, set to -1 to disable. |
|
force_all_rays: bool, ignore step_counter and mean_count, always calculate all rays. Useful if rendering the whole image, instead of some rays. |
|
dt_gamma: float, called cone_angle in instant-ngp, exponentially accelerate ray marching if > 0. (very significant effect, but generally lead to worse performance) |
|
max_steps: int, max number of sampled points along each ray, also affect min_stepsize. |
|
Returns: |
|
xyzs: float, [M, 3], all generated points' coords. (all rays concated, need to use `rays` to extract points belonging to each ray) |
|
dirs: float, [M, 3], all generated points' view dirs. |
|
deltas: float, [M, 2], all generated points' deltas. (first for RGB, second for Depth) |
|
rays: int32, [N, 3], all rays' (index, point_offset, point_count), e.g., xyzs[rays[i, 1]:rays[i, 2]] --> points belonging to rays[i, 0] |
|
''' |
|
|
|
if not rays_o.is_cuda: rays_o = rays_o.cuda() |
|
if not rays_d.is_cuda: rays_d = rays_d.cuda() |
|
if not density_bitfield.is_cuda: density_bitfield = density_bitfield.cuda() |
|
|
|
rays_o = rays_o.contiguous().view(-1, 3) |
|
rays_d = rays_d.contiguous().view(-1, 3) |
|
density_bitfield = density_bitfield.contiguous() |
|
|
|
N = rays_o.shape[0] |
|
M = N * max_steps |
|
|
|
|
|
|
|
if not force_all_rays and mean_count > 0: |
|
if align > 0: |
|
mean_count += align - mean_count % align |
|
M = mean_count |
|
|
|
xyzs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device) |
|
dirs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device) |
|
deltas = torch.zeros(M, 2, dtype=rays_o.dtype, device=rays_o.device) |
|
rays = torch.empty(N, 3, dtype=torch.int32, device=rays_o.device) |
|
|
|
if step_counter is None: |
|
step_counter = torch.zeros(2, dtype=torch.int32, device=rays_o.device) |
|
|
|
if perturb: |
|
noises = torch.rand(N, dtype=rays_o.dtype, device=rays_o.device) |
|
else: |
|
noises = torch.zeros(N, dtype=rays_o.dtype, device=rays_o.device) |
|
|
|
_backend.march_rays_train(rays_o, rays_d, density_bitfield, bound, dt_gamma, max_steps, N, C, H, M, nears, fars, xyzs, dirs, deltas, rays, step_counter, noises) |
|
|
|
|
|
|
|
|
|
if force_all_rays or mean_count <= 0: |
|
m = step_counter[0].item() |
|
if align > 0: |
|
m += align - m % align |
|
xyzs = xyzs[:m] |
|
dirs = dirs[:m] |
|
deltas = deltas[:m] |
|
|
|
torch.cuda.empty_cache() |
|
|
|
return xyzs, dirs, deltas, rays |
|
|
|
march_rays_train = _march_rays_train.apply |
|
|
|
|
|
class _composite_rays_train(Function): |
|
@staticmethod |
|
@custom_fwd(cast_inputs=torch.float32) |
|
def forward(ctx, sigmas, rgbs, deltas, rays, T_thresh=1e-4): |
|
''' composite rays' rgbs, according to the ray marching formula. |
|
Args: |
|
rgbs: float, [M, 3] |
|
sigmas: float, [M,] |
|
deltas: float, [M, 2] |
|
rays: int32, [N, 3] |
|
Returns: |
|
weights_sum: float, [N,], the alpha channel |
|
depth: float, [N, ], the Depth |
|
image: float, [N, 3], the RGB channel (after multiplying alpha!) |
|
''' |
|
|
|
sigmas = sigmas.contiguous() |
|
rgbs = rgbs.contiguous() |
|
|
|
M = sigmas.shape[0] |
|
N = rays.shape[0] |
|
|
|
weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) |
|
depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) |
|
image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device) |
|
|
|
_backend.composite_rays_train_forward(sigmas, rgbs, deltas, rays, M, N, T_thresh, weights_sum, depth, image) |
|
|
|
ctx.save_for_backward(sigmas, rgbs, deltas, rays, weights_sum, depth, image) |
|
ctx.dims = [M, N, T_thresh] |
|
|
|
return weights_sum, depth, image |
|
|
|
@staticmethod |
|
@custom_bwd |
|
def backward(ctx, grad_weights_sum, grad_depth, grad_image): |
|
|
|
|
|
|
|
grad_weights_sum = grad_weights_sum.contiguous() |
|
grad_image = grad_image.contiguous() |
|
|
|
sigmas, rgbs, deltas, rays, weights_sum, depth, image = ctx.saved_tensors |
|
M, N, T_thresh = ctx.dims |
|
|
|
grad_sigmas = torch.zeros_like(sigmas) |
|
grad_rgbs = torch.zeros_like(rgbs) |
|
|
|
_backend.composite_rays_train_backward(grad_weights_sum, grad_image, sigmas, rgbs, deltas, rays, weights_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs) |
|
|
|
return grad_sigmas, grad_rgbs, None, None, None |
|
|
|
|
|
composite_rays_train = _composite_rays_train.apply |
|
|
|
|
|
|
|
|
|
|
|
class _march_rays(Function): |
|
@staticmethod |
|
@custom_fwd(cast_inputs=torch.float32) |
|
def forward(ctx, n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, bound, density_bitfield, C, H, near, far, align=-1, perturb=False, dt_gamma=0, max_steps=1024): |
|
''' march rays to generate points (forward only, for inference) |
|
Args: |
|
n_alive: int, number of alive rays |
|
n_step: int, how many steps we march |
|
rays_alive: int, [N], the alive rays' IDs in N (N >= n_alive, but we only use first n_alive) |
|
rays_t: float, [N], the alive rays' time, we only use the first n_alive. |
|
rays_o/d: float, [N, 3] |
|
bound: float, scalar |
|
density_bitfield: uint8: [CHHH // 8] |
|
C: int |
|
H: int |
|
nears/fars: float, [N] |
|
align: int, pad output so its size is dividable by align, set to -1 to disable. |
|
perturb: bool/int, int > 0 is used as the random seed. |
|
dt_gamma: float, called cone_angle in instant-ngp, exponentially accelerate ray marching if > 0. (very significant effect, but generally lead to worse performance) |
|
max_steps: int, max number of sampled points along each ray, also affect min_stepsize. |
|
Returns: |
|
xyzs: float, [n_alive * n_step, 3], all generated points' coords |
|
dirs: float, [n_alive * n_step, 3], all generated points' view dirs. |
|
deltas: float, [n_alive * n_step, 2], all generated points' deltas (here we record two deltas, the first is for RGB, the second for depth). |
|
''' |
|
|
|
if not rays_o.is_cuda: rays_o = rays_o.cuda() |
|
if not rays_d.is_cuda: rays_d = rays_d.cuda() |
|
|
|
rays_o = rays_o.contiguous().view(-1, 3) |
|
rays_d = rays_d.contiguous().view(-1, 3) |
|
|
|
M = n_alive * n_step |
|
|
|
if align > 0: |
|
M += align - (M % align) |
|
|
|
xyzs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device) |
|
dirs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device) |
|
deltas = torch.zeros(M, 2, dtype=rays_o.dtype, device=rays_o.device) |
|
|
|
if perturb: |
|
|
|
noises = torch.rand(n_alive, dtype=rays_o.dtype, device=rays_o.device) |
|
else: |
|
noises = torch.zeros(n_alive, dtype=rays_o.dtype, device=rays_o.device) |
|
|
|
_backend.march_rays(n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, bound, dt_gamma, max_steps, C, H, density_bitfield, near, far, xyzs, dirs, deltas, noises) |
|
|
|
return xyzs, dirs, deltas |
|
|
|
march_rays = _march_rays.apply |
|
|
|
|
|
class _composite_rays(Function): |
|
@staticmethod |
|
@custom_fwd(cast_inputs=torch.float32) |
|
def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image, T_thresh=1e-2): |
|
''' composite rays' rgbs, according to the ray marching formula. (for inference) |
|
Args: |
|
n_alive: int, number of alive rays |
|
n_step: int, how many steps we march |
|
rays_alive: int, [n_alive], the alive rays' IDs in N (N >= n_alive) |
|
rays_t: float, [N], the alive rays' time |
|
sigmas: float, [n_alive * n_step,] |
|
rgbs: float, [n_alive * n_step, 3] |
|
deltas: float, [n_alive * n_step, 2], all generated points' deltas (here we record two deltas, the first is for RGB, the second for depth). |
|
In-place Outputs: |
|
weights_sum: float, [N,], the alpha channel |
|
depth: float, [N,], the depth value |
|
image: float, [N, 3], the RGB channel (after multiplying alpha!) |
|
''' |
|
_backend.composite_rays(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image) |
|
return tuple() |
|
|
|
|
|
composite_rays = _composite_rays.apply |