|
#include <torch/serialize/tensor.h> |
|
#include <vector> |
|
|
|
#include <math.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <cuda.h> |
|
#include <cuda_runtime_api.h> |
|
#include "interpolate_gpu.h" |
|
|
|
|
|
|
|
#include <ATen/cuda/CUDAContext.h> |
|
#include <ATen/cuda/CUDAEvent.h> |
|
|
|
|
|
#define CHECK_CUDA(x) do { \ |
|
if (!x.type().is_cuda()) { \ |
|
fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \ |
|
exit(-1); \ |
|
} \ |
|
} while (0) |
|
#define CHECK_CONTIGUOUS(x) do { \ |
|
if (!x.is_contiguous()) { \ |
|
fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \ |
|
exit(-1); \ |
|
} \ |
|
} while (0) |
|
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x) |
|
|
|
|
|
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor, |
|
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor) { |
|
const float *unknown = unknown_tensor.data<float>(); |
|
const float *known = known_tensor.data<float>(); |
|
float *dist2 = dist2_tensor.data<float>(); |
|
int *idx = idx_tensor.data<int>(); |
|
|
|
three_nn_kernel_launcher_fast(b, n, m, unknown, known, dist2, idx); |
|
} |
|
|
|
|
|
void three_interpolate_wrapper_fast(int b, int c, int m, int n, |
|
at::Tensor points_tensor, |
|
at::Tensor idx_tensor, |
|
at::Tensor weight_tensor, |
|
at::Tensor out_tensor) { |
|
|
|
const float *points = points_tensor.data<float>(); |
|
const float *weight = weight_tensor.data<float>(); |
|
float *out = out_tensor.data<float>(); |
|
const int *idx = idx_tensor.data<int>(); |
|
|
|
|
|
three_interpolate_kernel_launcher_fast(b, c, m, n, points, idx, weight, out); |
|
} |
|
|
|
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m, |
|
at::Tensor grad_out_tensor, |
|
at::Tensor idx_tensor, |
|
at::Tensor weight_tensor, |
|
at::Tensor grad_points_tensor) { |
|
|
|
const float *grad_out = grad_out_tensor.data<float>(); |
|
const float *weight = weight_tensor.data<float>(); |
|
float *grad_points = grad_points_tensor.data<float>(); |
|
const int *idx = idx_tensor.data<int>(); |
|
|
|
three_interpolate_grad_kernel_launcher_fast(b, c, n, m, grad_out, idx, weight, grad_points); |
|
} |
|
|
|
|
|
void three_nn_wrapper_stack(at::Tensor unknown_tensor, |
|
at::Tensor unknown_batch_cnt_tensor, at::Tensor known_tensor, |
|
at::Tensor known_batch_cnt_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor){ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CHECK_INPUT(unknown_tensor); |
|
CHECK_INPUT(unknown_batch_cnt_tensor); |
|
CHECK_INPUT(known_tensor); |
|
CHECK_INPUT(known_batch_cnt_tensor); |
|
CHECK_INPUT(dist2_tensor); |
|
CHECK_INPUT(idx_tensor); |
|
|
|
int batch_size = unknown_batch_cnt_tensor.size(0); |
|
int N = unknown_tensor.size(0); |
|
int M = known_tensor.size(0); |
|
const float *unknown = unknown_tensor.data<float>(); |
|
const int *unknown_batch_cnt = unknown_batch_cnt_tensor.data<int>(); |
|
const float *known = known_tensor.data<float>(); |
|
const int *known_batch_cnt = known_batch_cnt_tensor.data<int>(); |
|
float *dist2 = dist2_tensor.data<float>(); |
|
int *idx = idx_tensor.data<int>(); |
|
|
|
three_nn_kernel_launcher_stack(batch_size, N, M, unknown, unknown_batch_cnt, known, known_batch_cnt, dist2, idx); |
|
} |
|
|
|
|
|
void three_interpolate_wrapper_stack(at::Tensor features_tensor, |
|
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor) { |
|
|
|
|
|
|
|
|
|
|
|
CHECK_INPUT(features_tensor); |
|
CHECK_INPUT(idx_tensor); |
|
CHECK_INPUT(weight_tensor); |
|
CHECK_INPUT(out_tensor); |
|
|
|
int N = out_tensor.size(0); |
|
int channels = features_tensor.size(1); |
|
const float *features = features_tensor.data<float>(); |
|
const float *weight = weight_tensor.data<float>(); |
|
const int *idx = idx_tensor.data<int>(); |
|
float *out = out_tensor.data<float>(); |
|
|
|
three_interpolate_kernel_launcher_stack(N, channels, features, idx, weight, out); |
|
} |
|
|
|
|
|
void three_interpolate_grad_wrapper_stack(at::Tensor grad_out_tensor, at::Tensor idx_tensor, |
|
at::Tensor weight_tensor, at::Tensor grad_features_tensor) { |
|
|
|
|
|
|
|
|
|
|
|
CHECK_INPUT(grad_out_tensor); |
|
CHECK_INPUT(idx_tensor); |
|
CHECK_INPUT(weight_tensor); |
|
CHECK_INPUT(grad_features_tensor); |
|
|
|
int N = grad_out_tensor.size(0); |
|
int channels = grad_out_tensor.size(1); |
|
const float *grad_out = grad_out_tensor.data<float>(); |
|
const float *weight = weight_tensor.data<float>(); |
|
const int *idx = idx_tensor.data<int>(); |
|
float *grad_features = grad_features_tensor.data<float>(); |
|
|
|
|
|
three_interpolate_grad_kernel_launcher_stack(N, channels, grad_out, idx, weight, grad_features); |
|
} |