Initial lunar lander model
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander.zip +3 -0
- ppo-LunarLander/_stable_baselines3_version +1 -0
- ppo-LunarLander/data +94 -0
- ppo-LunarLander/policy.optimizer.pth +3 -0
- ppo-LunarLander/policy.pth +3 -0
- ppo-LunarLander/pytorch_variables.pth +3 -0
- ppo-LunarLander/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 103.59 +/- 79.51
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc9f44b3680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc9f44b3710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc9f44b37a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc9f44b3830>", "_build": "<function ActorCriticPolicy._build at 0x7fc9f44b38c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc9f44b3950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc9f44b39e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc9f44b3a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc9f44b3b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc9f44b3b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc9f44b3c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc9f44d5180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656175534.7627437, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAkDRavnLRXT9yMCG+tGKAvt7cib3aYKI9AAAAAAAAAACa2DM+MEerPmqsqr0kw1m98GYEOvia8rwAAAAAAAAAAEOijD6IdiA/mLz5PY72372Kuxw9tYpGOQAAAAAAAAAAUzM3voVhyTw7x623s5cSthHIX77Tpwc3AACAPwAAgD/6NFM+NslpvJLAGLfVuCk1ByncveqIOzYAAIA/AACAP7DVDr/njhI+KEBpvW+syb3Y9GG9g4anPQAAAAAAAAAAmmg7Pi53wrxNiWE7qlfauXQJK74SHZu6AACAPwAAgD/aRj6+LPPbPH7q4bkqGpo4VBFxvgp4MjkAAIA/AACAP40kPL7SQoo//j5RvhQ5YL43dTy9A6yNPAAAAAAAAAAAIAfwvlgihL2zyL899EjxvaI8DjyCn6c8AAAAAAAAAAAap0g+tIqSP6fknD4Jq2O+PTy1PS57LjwAAAAAAAAAAPY+Eb8RQ1M+BtpPPLQokb1AHwG84JI7vQAAAAAAAAAAPV2Kvu7qWz9bOPa9VUA7vtO3O732Ara8AAAAAAAAAAAq4fG+6qMFvSW3Kr31d/25OzhkviMcwLwAAAAAAAAAAGZ0nbxzxLA/9CYjv6Z98L4AR4g8rUCXPQAAAAAAAAAAmiKaPtTTgD5Wj1o8Ekz/vVgavTzf8gc8AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEwt8RbduO8CUhpRSlIwBbJRNdwGMAXSUR0CTDTn0Cih4dX2UKGgGaAloD0MIjGZl+5D1R8CUhpRSlGgVTcUBaBZHQJMSsXAM2FZ1fZQoaAZoCWgPQwjxSScSTCRrQJSGlFKUaBVN2AFoFkdAkxVO8wpOOHV9lChoBmgJaA9DCP578Nql2mtAlIaUUpRoFU3JAWgWR0CTF4uGbkOqdX2UKGgGaAloD0MICcIVUCi4Y0CUhpRSlGgVTUkCaBZHQJMYQcGTs6d1fZQoaAZoCWgPQwhnCwithyNMQJSGlFKUaBVN6ANoFkdAkxoPuG9HtnV9lChoBmgJaA9DCLWLaab7D2xAlIaUUpRoFU3GAWgWR0CTGzO+7Dl6dX2UKGgGaAloD0MIglfLnZm5UkCUhpRSlGgVTegDaBZHQJMbfyOJcgR1fZQoaAZoCWgPQwg6OxkcJVFtQJSGlFKUaBVNswFoFkdAkxyJmNBF/nV9lChoBmgJaA9DCIMXfQVp9krAlIaUUpRoFU1nAWgWR0CTHOKpT/ACdX2UKGgGaAloD0MIkSkfgqrJKsCUhpRSlGgVTUIBaBZHQJMeyCBf8dh1fZQoaAZoCWgPQwgeNpGZi8NmQJSGlFKUaBVN1gFoFkdAkx7plnRLK3V9lChoBmgJaA9DCJoklpS7blDAlIaUUpRoFU2cAWgWR0CTIC4+bExZdX2UKGgGaAloD0MIQPhQoiVFQsCUhpRSlGgVTZIBaBZHQJNQSEXcgyN1fZQoaAZoCWgPQwg1DB8RU6oywJSGlFKUaBVNbgFoFkdAk1L04Nqgy3V9lChoBmgJaA9DCIOJP4q6LmdAlIaUUpRoFU0sAmgWR0CTVRzposZpdX2UKGgGaAloD0MIf9x++eRLaUCUhpRSlGgVTWoBaBZHQJNXbtrsSkF1fZQoaAZoCWgPQwh4uB0aFiM2wJSGlFKUaBVNvAFoFkdAk1k8qrilznV9lChoBmgJaA9DCAyyZfm6/EjAlIaUUpRoFU2NAWgWR0CTXLB3A2ycdX2UKGgGaAloD0MItABtq1kEcECUhpRSlGgVTdMBaBZHQJNcy2hIvrZ1fZQoaAZoCWgPQwg//WfNjyRVQJSGlFKUaBVN6ANoFkdAk119pVS4v3V9lChoBmgJaA9DCEBqEyf3I2xAlIaUUpRoFU3WAWgWR0CTYE3s5XEJdX2UKGgGaAloD0MInYAmwgYRaUCUhpRSlGgVTfsBaBZHQJNhRAOavzR1fZQoaAZoCWgPQwhS0sPQ6iQmwJSGlFKUaBVN2wFoFkdAk2J62WpqAXV9lChoBmgJaA9DCLt/LESHrFFAlIaUUpRoFU3oA2gWR0CTZAKNAC4jdX2UKGgGaAloD0MID4C4q1fDRsCUhpRSlGgVTYMBaBZHQJNkWzRhMJx1fZQoaAZoCWgPQwjPL0rQ37xoQJSGlFKUaBVNCQJoFkdAk2RpB5X2d3V9lChoBmgJaA9DCOcb0T3rbWtAlIaUUpRoFU32AWgWR0CTZcOoYNy6dX2UKGgGaAloD0MIiUD1D6IjZECUhpRSlGgVTRUCaBZHQJNonesPrfN1fZQoaAZoCWgPQwjbUDHO3/1rQJSGlFKUaBVNqwFoFkdAk2ix/NJOFnV9lChoBmgJaA9DCOBKdmwEjk7AlIaUUpRoFU0tAWgWR0CTa9bEP1+RdX2UKGgGaAloD0MIK98zEiETZECUhpRSlGgVTc8BaBZHQJNsXiVB2Oh1fZQoaAZoCWgPQwhHcvkP6eZqQJSGlFKUaBVNwwFoFkdAk2+qz3RG+nV9lChoBmgJaA9DCNF4IojzD2VAlIaUUpRoFU3mAmgWR0CTcUYUFjd6dX2UKGgGaAloD0MIGGAfnboQZ0CUhpRSlGgVTRYCaBZHQJNyXyRSxaB1fZQoaAZoCWgPQwhtrS8S2vhBwJSGlFKUaBVN5wFoFkdAk3TK6STyKHV9lChoBmgJaA9DCMKmzqPiyGtAlIaUUpRoFU3xAWgWR0CTdX2vStvGdX2UKGgGaAloD0MIJxO3CmIwU8CUhpRSlGgVTaEBaBZHQJN4x5AyEct1fZQoaAZoCWgPQwhhinJpfC1kQJSGlFKUaBVN7wFoFkdAk3lML0BfbHV9lChoBmgJaA9DCGraxTTTXUfAlIaUUpRoFU2IAWgWR0CTedHqeK8+dX2UKGgGaAloD0MIueAM/n45ZkCUhpRSlGgVTf0BaBZHQJN+65AhStN1fZQoaAZoCWgPQwgPnDOitNVGwJSGlFKUaBVNnQFoFkdAk38zkZJkG3V9lChoBmgJaA9DCNxJRPgXM2tAlIaUUpRoFU2kAWgWR0CTf6aMrEtNdX2UKGgGaAloD0MIVwirsYSKY0CUhpRSlGgVTRQCaBZHQJOAPD50r9V1fZQoaAZoCWgPQwgSEf5FUAtqQJSGlFKUaBVNsAJoFkdAk7NwFX7tRnV9lChoBmgJaA9DCMDqyJHOLDbAlIaUUpRoFU2PAWgWR0CTtk4pMHrydX2UKGgGaAloD0MIaQJFLOKFakCUhpRSlGgVTRECaBZHQJO3txYJVsF1fZQoaAZoCWgPQwiFmEuqttdtQJSGlFKUaBVN2AFoFkdAk7jm4EwFknV9lChoBmgJaA9DCFA4u7VMDm1AlIaUUpRoFU2nAWgWR0CTuPaMJhOQdX2UKGgGaAloD0MIVW03wTf1a0CUhpRSlGgVTbgBaBZHQJO8bYYixFB1fZQoaAZoCWgPQwj9ogT9hTVqQJSGlFKUaBVNYgJoFkdAk7z836yjYnV9lChoBmgJaA9DCBPyQc/mT2hAlIaUUpRoFU2tAWgWR0CTwIMeOn2qdX2UKGgGaAloD0MIP3RBfcu8bUCUhpRSlGgVTfIBaBZHQJPD/JDE3sJ1fZQoaAZoCWgPQwisHFpkuztlQJSGlFKUaBVNXgJoFkdAk8a9Jrcj7nV9lChoBmgJaA9DCFMEOL0LLGtAlIaUUpRoFU3EAWgWR0CTxtPv8ZUDdX2UKGgGaAloD0MIkSbeAZ7EV0CUhpRSlGgVTegDaBZHQJPG8D6nBLx1fZQoaAZoCWgPQwi+2ebGdJNsQJSGlFKUaBVN3AFoFkdAk8lGldkauXV9lChoBmgJaA9DCApmTMEagGxAlIaUUpRoFU3TAWgWR0CTzeuJk5IZdX2UKGgGaAloD0MIa7qe6Doha0CUhpRSlGgVTZ4BaBZHQJPQOuNgjQl1fZQoaAZoCWgPQwg6lKEqJrtqQJSGlFKUaBVN0QFoFkdAk9Co7/4qPXV9lChoBmgJaA9DCNOh0/PuemxAlIaUUpRoFU3HAWgWR0CT0nyM1jy4dX2UKGgGaAloD0MIhV0UPfCCZECUhpRSlGgVTSsCaBZHQJPcNq20AtF1fZQoaAZoCWgPQwiQvHMoQ2pbQJSGlFKUaBVN6ANoFkdAk+GEvGp++nV9lChoBmgJaA9DCMB63Lfa6mVAlIaUUpRoFU0GAmgWR0CT40b8WKuTdX2UKGgGaAloD0MIdAtdiUDXbECUhpRSlGgVTfEBaBZHQJPlDoOhCdB1fZQoaAZoCWgPQwiakxeZgGtlQJSGlFKUaBVN6gFoFkdAk+e7PhQ3xXV9lChoBmgJaA9DCCld+pekS19AlIaUUpRoFU3oA2gWR0CT6KmwJPZadX2UKGgGaAloD0MIoaAUrdyFVECUhpRSlGgVTegDaBZHQJPpKHLzPKN1fZQoaAZoCWgPQwhKtrqckpJoQJSGlFKUaBVNxgFoFkdAk+qYnndO7HV9lChoBmgJaA9DCEj5SbXPYGdAlIaUUpRoFU3LAWgWR0CT7OMfigkDdX2UKGgGaAloD0MIf2snSkKEZkCUhpRSlGgVTfoBaBZHQJQgOtyPuG91fZQoaAZoCWgPQwiLxtrf2Y5RwJSGlFKUaBVN2gFoFkdAlCBZXyRSxnV9lChoBmgJaA9DCLtfBfhuo1hAlIaUUpRoFU3oA2gWR0CUIwJp35erdX2UKGgGaAloD0MI6Pf9mxfzTcCUhpRSlGgVTY0BaBZHQJQk9EWqLjx1fZQoaAZoCWgPQwinAu55/t5RQJSGlFKUaBVN6ANoFkdAlChClrM1THV9lChoBmgJaA9DCFab/1cdr2xAlIaUUpRoFU2eAWgWR0CUKjalk6LgdX2UKGgGaAloD0MI6Nms+lx2U0CUhpRSlGgVTegDaBZHQJQsERjBl+V1fZQoaAZoCWgPQwi/79+8uJ5pQJSGlFKUaBVNsAFoFkdAlCyoRujynXV9lChoBmgJaA9DCKM/NPPkGEnAlIaUUpRoFU2DAWgWR0CULbnjyWiUdX2UKGgGaAloD0MIUwWjkjoREsCUhpRSlGgVTYcBaBZHQJQuslSjxkN1fZQoaAZoCWgPQwgzTkNU4XBdQJSGlFKUaBVN6ANoFkdAlDGY287IUHV9lChoBmgJaA9DCCDQmbSp/lBAlIaUUpRoFU3oA2gWR0CUMarbQC0XdX2UKGgGaAloD0MIkrHa/D9kaUCUhpRSlGgVTewBaBZHQJQ0UCNjsld1fZQoaAZoCWgPQwgjaqLPxylpQJSGlFKUaBVNwgFoFkdAlDXLxNIsiHV9lChoBmgJaA9DCMAg6dMqukDAlIaUUpRoFU2fAWgWR0CUNrSsKb8WdX2UKGgGaAloD0MIKC1cVuGXbECUhpRSlGgVTbwBaBZHQJQ6zC9AX2x1fZQoaAZoCWgPQwjqspjYfFRCwJSGlFKUaBVNQwFoFkdAlDry13MY/HV9lChoBmgJaA9DCIbLKmwGb2dAlIaUUpRoFU2xAmgWR0CUOxDCP6sRdX2UKGgGaAloD0MIVFc+y3OzaECUhpRSlGgVTfEBaBZHQJQ/FTisGPh1fZQoaAZoCWgPQwgh5pKq7VduQJSGlFKUaBVNjgJoFkdAlEMB/qgRLHV9lChoBmgJaA9DCNMx5xl7D2pAlIaUUpRoFU3VAWgWR0CURDAvtdAxdX2UKGgGaAloD0MIW+uLhLY3bECUhpRSlGgVTb4BaBZHQJREjXZoPCl1fZQoaAZoCWgPQwh5O8JpQdVqQJSGlFKUaBVNkAFoFkdAlEX2jj7yhHV9lChoBmgJaA9DCD83NGWn6UnAlIaUUpRoFU2ZAWgWR0CURlQ2/BWQdX2UKGgGaAloD0MIEodsIF3ZX0CUhpRSlGgVTYACaBZHQJRNL6k69011fZQoaAZoCWgPQwhWurvOBgBjQJSGlFKUaBVNCQJoFkdAlE7NuHerMnV9lChoBmgJaA9DCLbykv/JoldAlIaUUpRoFU3oA2gWR0CUT4zoEB8ydX2UKGgGaAloD0MIUkMbgA3FaECUhpRSlGgVTbcBaBZHQJRRmmALApN1fZQoaAZoCWgPQwhFoPoHkTZgQJSGlFKUaBVNMAJoFkdAlFJ7MHKOk3V9lChoBmgJaA9DCM5vmGiQG1LAlIaUUpRoFU07AWgWR0CUVJrTH80ldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.98, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dbc793573fbc6c29ce3727f29cdd39573919ab6b95d672cff8c0031e6fd9561
|
3 |
+
size 144219
|
ppo-LunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc9f44b3680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc9f44b3710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc9f44b37a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc9f44b3830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc9f44b38c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc9f44b3950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc9f44b39e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc9f44b3a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc9f44b3b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc9f44b3b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc9f44b3c20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc9f44d5180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1656175534.7627437,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAkDRavnLRXT9yMCG+tGKAvt7cib3aYKI9AAAAAAAAAACa2DM+MEerPmqsqr0kw1m98GYEOvia8rwAAAAAAAAAAEOijD6IdiA/mLz5PY72372Kuxw9tYpGOQAAAAAAAAAAUzM3voVhyTw7x623s5cSthHIX77Tpwc3AACAPwAAgD/6NFM+NslpvJLAGLfVuCk1ByncveqIOzYAAIA/AACAP7DVDr/njhI+KEBpvW+syb3Y9GG9g4anPQAAAAAAAAAAmmg7Pi53wrxNiWE7qlfauXQJK74SHZu6AACAPwAAgD/aRj6+LPPbPH7q4bkqGpo4VBFxvgp4MjkAAIA/AACAP40kPL7SQoo//j5RvhQ5YL43dTy9A6yNPAAAAAAAAAAAIAfwvlgihL2zyL899EjxvaI8DjyCn6c8AAAAAAAAAAAap0g+tIqSP6fknD4Jq2O+PTy1PS57LjwAAAAAAAAAAPY+Eb8RQ1M+BtpPPLQokb1AHwG84JI7vQAAAAAAAAAAPV2Kvu7qWz9bOPa9VUA7vtO3O732Ara8AAAAAAAAAAAq4fG+6qMFvSW3Kr31d/25OzhkviMcwLwAAAAAAAAAAGZ0nbxzxLA/9CYjv6Z98L4AR4g8rUCXPQAAAAAAAAAAmiKaPtTTgD5Wj1o8Ekz/vVgavTzf8gc8AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEwt8RbduO8CUhpRSlIwBbJRNdwGMAXSUR0CTDTn0Cih4dX2UKGgGaAloD0MIjGZl+5D1R8CUhpRSlGgVTcUBaBZHQJMSsXAM2FZ1fZQoaAZoCWgPQwjxSScSTCRrQJSGlFKUaBVN2AFoFkdAkxVO8wpOOHV9lChoBmgJaA9DCP578Nql2mtAlIaUUpRoFU3JAWgWR0CTF4uGbkOqdX2UKGgGaAloD0MICcIVUCi4Y0CUhpRSlGgVTUkCaBZHQJMYQcGTs6d1fZQoaAZoCWgPQwhnCwithyNMQJSGlFKUaBVN6ANoFkdAkxoPuG9HtnV9lChoBmgJaA9DCLWLaab7D2xAlIaUUpRoFU3GAWgWR0CTGzO+7Dl6dX2UKGgGaAloD0MIglfLnZm5UkCUhpRSlGgVTegDaBZHQJMbfyOJcgR1fZQoaAZoCWgPQwg6OxkcJVFtQJSGlFKUaBVNswFoFkdAkxyJmNBF/nV9lChoBmgJaA9DCIMXfQVp9krAlIaUUpRoFU1nAWgWR0CTHOKpT/ACdX2UKGgGaAloD0MIkSkfgqrJKsCUhpRSlGgVTUIBaBZHQJMeyCBf8dh1fZQoaAZoCWgPQwgeNpGZi8NmQJSGlFKUaBVN1gFoFkdAkx7plnRLK3V9lChoBmgJaA9DCJoklpS7blDAlIaUUpRoFU2cAWgWR0CTIC4+bExZdX2UKGgGaAloD0MIQPhQoiVFQsCUhpRSlGgVTZIBaBZHQJNQSEXcgyN1fZQoaAZoCWgPQwg1DB8RU6oywJSGlFKUaBVNbgFoFkdAk1L04Nqgy3V9lChoBmgJaA9DCIOJP4q6LmdAlIaUUpRoFU0sAmgWR0CTVRzposZpdX2UKGgGaAloD0MIf9x++eRLaUCUhpRSlGgVTWoBaBZHQJNXbtrsSkF1fZQoaAZoCWgPQwh4uB0aFiM2wJSGlFKUaBVNvAFoFkdAk1k8qrilznV9lChoBmgJaA9DCAyyZfm6/EjAlIaUUpRoFU2NAWgWR0CTXLB3A2ycdX2UKGgGaAloD0MItABtq1kEcECUhpRSlGgVTdMBaBZHQJNcy2hIvrZ1fZQoaAZoCWgPQwg//WfNjyRVQJSGlFKUaBVN6ANoFkdAk119pVS4v3V9lChoBmgJaA9DCEBqEyf3I2xAlIaUUpRoFU3WAWgWR0CTYE3s5XEJdX2UKGgGaAloD0MInYAmwgYRaUCUhpRSlGgVTfsBaBZHQJNhRAOavzR1fZQoaAZoCWgPQwhS0sPQ6iQmwJSGlFKUaBVN2wFoFkdAk2J62WpqAXV9lChoBmgJaA9DCLt/LESHrFFAlIaUUpRoFU3oA2gWR0CTZAKNAC4jdX2UKGgGaAloD0MID4C4q1fDRsCUhpRSlGgVTYMBaBZHQJNkWzRhMJx1fZQoaAZoCWgPQwjPL0rQ37xoQJSGlFKUaBVNCQJoFkdAk2RpB5X2d3V9lChoBmgJaA9DCOcb0T3rbWtAlIaUUpRoFU32AWgWR0CTZcOoYNy6dX2UKGgGaAloD0MIiUD1D6IjZECUhpRSlGgVTRUCaBZHQJNonesPrfN1fZQoaAZoCWgPQwjbUDHO3/1rQJSGlFKUaBVNqwFoFkdAk2ix/NJOFnV9lChoBmgJaA9DCOBKdmwEjk7AlIaUUpRoFU0tAWgWR0CTa9bEP1+RdX2UKGgGaAloD0MIK98zEiETZECUhpRSlGgVTc8BaBZHQJNsXiVB2Oh1fZQoaAZoCWgPQwhHcvkP6eZqQJSGlFKUaBVNwwFoFkdAk2+qz3RG+nV9lChoBmgJaA9DCNF4IojzD2VAlIaUUpRoFU3mAmgWR0CTcUYUFjd6dX2UKGgGaAloD0MIGGAfnboQZ0CUhpRSlGgVTRYCaBZHQJNyXyRSxaB1fZQoaAZoCWgPQwhtrS8S2vhBwJSGlFKUaBVN5wFoFkdAk3TK6STyKHV9lChoBmgJaA9DCMKmzqPiyGtAlIaUUpRoFU3xAWgWR0CTdX2vStvGdX2UKGgGaAloD0MIJxO3CmIwU8CUhpRSlGgVTaEBaBZHQJN4x5AyEct1fZQoaAZoCWgPQwhhinJpfC1kQJSGlFKUaBVN7wFoFkdAk3lML0BfbHV9lChoBmgJaA9DCGraxTTTXUfAlIaUUpRoFU2IAWgWR0CTedHqeK8+dX2UKGgGaAloD0MIueAM/n45ZkCUhpRSlGgVTf0BaBZHQJN+65AhStN1fZQoaAZoCWgPQwgPnDOitNVGwJSGlFKUaBVNnQFoFkdAk38zkZJkG3V9lChoBmgJaA9DCNxJRPgXM2tAlIaUUpRoFU2kAWgWR0CTf6aMrEtNdX2UKGgGaAloD0MIVwirsYSKY0CUhpRSlGgVTRQCaBZHQJOAPD50r9V1fZQoaAZoCWgPQwgSEf5FUAtqQJSGlFKUaBVNsAJoFkdAk7NwFX7tRnV9lChoBmgJaA9DCMDqyJHOLDbAlIaUUpRoFU2PAWgWR0CTtk4pMHrydX2UKGgGaAloD0MIaQJFLOKFakCUhpRSlGgVTRECaBZHQJO3txYJVsF1fZQoaAZoCWgPQwiFmEuqttdtQJSGlFKUaBVN2AFoFkdAk7jm4EwFknV9lChoBmgJaA9DCFA4u7VMDm1AlIaUUpRoFU2nAWgWR0CTuPaMJhOQdX2UKGgGaAloD0MIVW03wTf1a0CUhpRSlGgVTbgBaBZHQJO8bYYixFB1fZQoaAZoCWgPQwj9ogT9hTVqQJSGlFKUaBVNYgJoFkdAk7z836yjYnV9lChoBmgJaA9DCBPyQc/mT2hAlIaUUpRoFU2tAWgWR0CTwIMeOn2qdX2UKGgGaAloD0MIP3RBfcu8bUCUhpRSlGgVTfIBaBZHQJPD/JDE3sJ1fZQoaAZoCWgPQwisHFpkuztlQJSGlFKUaBVNXgJoFkdAk8a9Jrcj7nV9lChoBmgJaA9DCFMEOL0LLGtAlIaUUpRoFU3EAWgWR0CTxtPv8ZUDdX2UKGgGaAloD0MIkSbeAZ7EV0CUhpRSlGgVTegDaBZHQJPG8D6nBLx1fZQoaAZoCWgPQwi+2ebGdJNsQJSGlFKUaBVN3AFoFkdAk8lGldkauXV9lChoBmgJaA9DCApmTMEagGxAlIaUUpRoFU3TAWgWR0CTzeuJk5IZdX2UKGgGaAloD0MIa7qe6Doha0CUhpRSlGgVTZ4BaBZHQJPQOuNgjQl1fZQoaAZoCWgPQwg6lKEqJrtqQJSGlFKUaBVN0QFoFkdAk9Co7/4qPXV9lChoBmgJaA9DCNOh0/PuemxAlIaUUpRoFU3HAWgWR0CT0nyM1jy4dX2UKGgGaAloD0MIhV0UPfCCZECUhpRSlGgVTSsCaBZHQJPcNq20AtF1fZQoaAZoCWgPQwiQvHMoQ2pbQJSGlFKUaBVN6ANoFkdAk+GEvGp++nV9lChoBmgJaA9DCMB63Lfa6mVAlIaUUpRoFU0GAmgWR0CT40b8WKuTdX2UKGgGaAloD0MIdAtdiUDXbECUhpRSlGgVTfEBaBZHQJPlDoOhCdB1fZQoaAZoCWgPQwiakxeZgGtlQJSGlFKUaBVN6gFoFkdAk+e7PhQ3xXV9lChoBmgJaA9DCCld+pekS19AlIaUUpRoFU3oA2gWR0CT6KmwJPZadX2UKGgGaAloD0MIoaAUrdyFVECUhpRSlGgVTegDaBZHQJPpKHLzPKN1fZQoaAZoCWgPQwhKtrqckpJoQJSGlFKUaBVNxgFoFkdAk+qYnndO7HV9lChoBmgJaA9DCEj5SbXPYGdAlIaUUpRoFU3LAWgWR0CT7OMfigkDdX2UKGgGaAloD0MIf2snSkKEZkCUhpRSlGgVTfoBaBZHQJQgOtyPuG91fZQoaAZoCWgPQwiLxtrf2Y5RwJSGlFKUaBVN2gFoFkdAlCBZXyRSxnV9lChoBmgJaA9DCLtfBfhuo1hAlIaUUpRoFU3oA2gWR0CUIwJp35erdX2UKGgGaAloD0MI6Pf9mxfzTcCUhpRSlGgVTY0BaBZHQJQk9EWqLjx1fZQoaAZoCWgPQwinAu55/t5RQJSGlFKUaBVN6ANoFkdAlChClrM1THV9lChoBmgJaA9DCFab/1cdr2xAlIaUUpRoFU2eAWgWR0CUKjalk6LgdX2UKGgGaAloD0MI6Nms+lx2U0CUhpRSlGgVTegDaBZHQJQsERjBl+V1fZQoaAZoCWgPQwi/79+8uJ5pQJSGlFKUaBVNsAFoFkdAlCyoRujynXV9lChoBmgJaA9DCKM/NPPkGEnAlIaUUpRoFU2DAWgWR0CULbnjyWiUdX2UKGgGaAloD0MIUwWjkjoREsCUhpRSlGgVTYcBaBZHQJQuslSjxkN1fZQoaAZoCWgPQwgzTkNU4XBdQJSGlFKUaBVN6ANoFkdAlDGY287IUHV9lChoBmgJaA9DCCDQmbSp/lBAlIaUUpRoFU3oA2gWR0CUMarbQC0XdX2UKGgGaAloD0MIkrHa/D9kaUCUhpRSlGgVTewBaBZHQJQ0UCNjsld1fZQoaAZoCWgPQwgjaqLPxylpQJSGlFKUaBVNwgFoFkdAlDXLxNIsiHV9lChoBmgJaA9DCMAg6dMqukDAlIaUUpRoFU2fAWgWR0CUNrSsKb8WdX2UKGgGaAloD0MIKC1cVuGXbECUhpRSlGgVTbwBaBZHQJQ6zC9AX2x1fZQoaAZoCWgPQwjqspjYfFRCwJSGlFKUaBVNQwFoFkdAlDry13MY/HV9lChoBmgJaA9DCIbLKmwGb2dAlIaUUpRoFU2xAmgWR0CUOxDCP6sRdX2UKGgGaAloD0MIVFc+y3OzaECUhpRSlGgVTfEBaBZHQJQ/FTisGPh1fZQoaAZoCWgPQwgh5pKq7VduQJSGlFKUaBVNjgJoFkdAlEMB/qgRLHV9lChoBmgJaA9DCNMx5xl7D2pAlIaUUpRoFU3VAWgWR0CURDAvtdAxdX2UKGgGaAloD0MIW+uLhLY3bECUhpRSlGgVTb4BaBZHQJREjXZoPCl1fZQoaAZoCWgPQwh5O8JpQdVqQJSGlFKUaBVNkAFoFkdAlEX2jj7yhHV9lChoBmgJaA9DCD83NGWn6UnAlIaUUpRoFU2ZAWgWR0CURlQ2/BWQdX2UKGgGaAloD0MIEodsIF3ZX0CUhpRSlGgVTYACaBZHQJRNL6k69011fZQoaAZoCWgPQwhWurvOBgBjQJSGlFKUaBVNCQJoFkdAlE7NuHerMnV9lChoBmgJaA9DCLbykv/JoldAlIaUUpRoFU3oA2gWR0CUT4zoEB8ydX2UKGgGaAloD0MIUkMbgA3FaECUhpRSlGgVTbcBaBZHQJRRmmALApN1fZQoaAZoCWgPQwhFoPoHkTZgQJSGlFKUaBVNMAJoFkdAlFJ7MHKOk3V9lChoBmgJaA9DCM5vmGiQG1LAlIaUUpRoFU07AWgWR0CUVJrTH80ldWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.98,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:277d4e7dfa644ab10c88c1def7b8cb2fcfb73061f43d97109a73e670258b9e55
|
3 |
+
size 84893
|
ppo-LunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f982b22f456d5e14623c54229bd74849728cf057ab121e6de8d434e8e0cc9b5
|
3 |
+
size 43201
|
ppo-LunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24a9cabe50045a15048768f6126379f97bc3ca7f178cc7bf410b3f6cf510d732
|
3 |
+
size 251859
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 103.59157999097529, "std_reward": 79.51361681533778, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-25T17:04:29.808619"}
|