Wanlin0001 commited on
Commit
0650f1c
1 Parent(s): 483994d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 258.29 +/- 20.02
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b4ab9693be0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b4ab9693c70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b4ab9693d00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b4ab9693d90>", "_build": "<function ActorCriticPolicy._build at 0x7b4ab9693e20>", "forward": "<function ActorCriticPolicy.forward at 0x7b4ab9693eb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b4ab9693f40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b4ab9698040>", "_predict": "<function ActorCriticPolicy._predict at 0x7b4ab96980d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b4ab9698160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b4ab96981f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b4ab9698280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b4ab963b940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697661803526830074, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEYyaj57wNE7qlWAvkuEqTwvju49/3oPvgAAgD8AAIA/mgkHPSl4O7pGTyw4BEaVMj9XZzmFa0S3AACAPwAAgD8zpT88D3xMPcaxEL5iHlm+i9ViujKipLwAAAAAAAAAAACYnTvDwTq6dlhiOs2HsbTE4ZG7PiODuQAAgD8AAIA/mhZtPRTUnLowkM862oizNRix47pTme+5AACAPwAAgD8a7U+9ce1YuTVCbjkfS5g2rFI5O98sj7gAAIA/AACAP9q1sb1xzVS541hZPEHsHLa8Avu5XacdtQAAAAAAAIA/OuIPvnO3jj/m3em9XsqpvmaIzL1Egjk8AAAAAAAAAADN6AE8KdBzug3VTbbrw7QwIU2PuyBJczUAAIA/AACAP3CPhz5c85E+8gAjvh6Feb7wFMa7dHkyvQAAAAAAAAAAflemvl+BdT89HXG+5BeYvhhCcL6CCQU+AAAAAAAAAACAM3i94bikutseyjeesLcyZLiROp7J6LYAAIA/AACAP23vDj72Hxk9QqSavmZEi7576EO9GlwbPQAAAAAAAAAAM7tsPXsGoLr+E4k2M+vQMRK9/Tl1taC1AACAPwAAgD8N4tS9hdAKP9YapDyRYYK+LlpAvc48kz0AAAAAAAAAACauDT7X/Xe7g3O0OssuErg6tbK8CpfjuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFn+64UeuFKMAWyUTegDjAF0lEdAoHxP7cfvF3V9lChoBkdAW9ylpGnXNGgHTegDaAhHQKB8TxQSBbx1fZQoaAZHQF17YqoZQ55oB03oA2gIR0CgfNM2NvOydX2UKGgGR0Bfr9hmXgLraAdN6ANoCEdAoH1nj0cwQHV9lChoBkdAWwcYHgP3BmgHTegDaAhHQKB9k6RyOrB1fZQoaAZHQFhzx2jfvWpoB03oA2gIR0Cgfg39R77bdX2UKGgGR0BiGO3UhFEzaAdN6ANoCEdAoH7b7655JXV9lChoBkdAYh94dIXj2mgHTegDaAhHQKB+6kP+XJJ1fZQoaAZHQFfsWT5ftyBoB03oA2gIR0Cgf5E2YOUddX2UKGgGR0BefDd56dDqaAdN6ANoCEdAoH/7Dn/1hHV9lChoBkdAabXRbbDdg2gHTcQCaAhHQKCeI9g4Otp1fZQoaAZHQGLE5I6Kcd5oB03oA2gIR0CgpfRDLKV6dX2UKGgGR0Bc1nlKbrkbaAdN6ANoCEdAoKslTR6WxHV9lChoBkdAWQf/Ot4iYGgHTegDaAhHQKCu0y2x6fJ1fZQoaAZHQGCZFsHjZL9oB03oA2gIR0CgsKn0kGA1dX2UKGgGR0BZjKtcOby6aAdN6ANoCEdAoLD+j/MnqnV9lChoBkdAYOwP1ct5EGgHTegDaAhHQKCxHPTodMl1fZQoaAZHQGFf+/xlQMxoB03oA2gIR0CgsRwQDmr9dX2UKGgGR0BgjrXjENvwaAdN6ANoCEdAoLGW/WUbDXV9lChoBkdAXV2/k/8l5WgHTegDaAhHQKCyLhkRSP51fZQoaAZHQFlCZ/CqIadoB03oA2gIR0CgslgrpaA4dX2UKGgGR0Bgd8/B3zMBaAdN6ANoCEdAoLLCfOD8L3V9lChoBkdAVYmgoPTXrmgHTegDaAhHQKCzoqwQlKN1fZQoaAZHQFm7jsD4gzRoB03oA2gIR0Cgs65q/M4cdX2UKGgGR0BZTjl1bJOnaAdN6ANoCEdAoLRSQq7ROXV9lChoBkdAYvAIbfgrH2gHTegDaAhHQKC0wQQL/jt1fZQoaAZHQGPSjghr30xoB03oA2gIR0Cg0qrzwtrcdX2UKGgGR0BdT0EcKgIyaAdN6ANoCEdAoNjtuivgWXV9lChoBkdAWtw6r/82rGgHTegDaAhHQKDcf336AOJ1fZQoaAZHQGNwPqTr3TNoB03oA2gIR0Cg3xicwxnGdX2UKGgGR0Betp/smfGuaAdN6ANoCEdAoOC+gSOBD3V9lChoBkdAYYLDTjNpumgHTegDaAhHQKDhDkuHvc91fZQoaAZHQGGQlhPTG5toB03oA2gIR0Cg4Srs0HhTdX2UKGgGR0BbaLqUu+RHaAdN6ANoCEdAoOEp4fOlf3V9lChoBkdAZLXyup0fYGgHTegDaAhHQKDhvlNDc/N1fZQoaAZHQGA7KdhAnlZoB03oA2gIR0Cg4oBshxHYdX2UKGgGR0BcPwM6RyOraAdN6ANoCEdAoOK5yp71I3V9lChoBkdAY/lBKL8762gHTegDaAhHQKDjWtzS1E51fZQoaAZHQGVw3oTwlSloB03oA2gIR0Cg5I1G0/nodX2UKGgGR0BeUNtVJcxCaAdN6ANoCEdAoOSebqhUR3V9lChoBkdAUzl9qk/KQ2gHTegDaAhHQKDlf8YQ8Ol1fZQoaAZHQF8YTnaFmFtoB03oA2gIR0Cg5hKqn3tbdX2UKGgGR0Byox7F85S4aAdNIAFoCEdAoPOC6MBIWnV9lChoBkdAcftbsWweNmgHTbgBaAhHQKD5+rKeTV51fZQoaAZHQGIYI2GZeAxoB03oA2gIR0Cg/5+Y2Kl6dX2UKGgGR0BZavIn0CiiaAdN6ANoCEdAoQYm8f3evnV9lChoBkdAbqe2OyVv/GgHTS4DaAhHQKEInvBrN4Z1fZQoaAZHQGRhe9Ba9sdoB03oA2gIR0ChChUqQRwqdX2UKGgGR0BbPnTy8SPEaAdN6ANoCEdAoQy1LrX18XV9lChoBkdAYqnlg+hXbWgHTegDaAhHQKEOCWWyC4B1fZQoaAZHQGJcKzzErG1oB03oA2gIR0ChDkgQHzH0dX2UKGgGR0BcZsMNMGoraAdN6ANoCEdAoQ5jLKV6eHV9lChoBkdAXz6UTtb9qGgHTegDaAhHQKEOwsiB5HF1fZQoaAZHQGMWHPE87p5oB03oA2gIR0ChDzH8baRIdX2UKGgGR0Bg5nQF9roGaAdN6ANoCEdAoRClMsYl6nV9lChoBkdAY/tpwjt5U2gHTegDaAhHQKEQsHt4RmN1fZQoaAZHQFuCwW3z+WJoB03oA2gIR0ChEWe5e7cxdX2UKGgGR0BgyJNRFZxJaAdN6ANoCEdAoRHsKzAvc3V9lChoBkdAYLkK6WgOBmgHTegDaAhHQKEeFydWhh91fZQoaAZHQEZzsKLKmsNoB0vfaAhHQKEe9QhOgxt1fZQoaAZHQHHWTGYKIBRoB00GAmgIR0ChIM9F4LThdX2UKGgGR0BwzRwOvt+kaAdNGQJoCEdAoSL3eP7vX3V9lChoBkdAYByzabnX/mgHTegDaAhHQKEmY6YE4ed1fZQoaAZHQF9xEDhcZ+BoB03oA2gIR0ChLbOJcgQpdX2UKGgGR0BeHTk+5e7daAdN6ANoCEdAoTMW/8EV33V9lChoBkdAcbdFLFn7HmgHTTECaAhHQKE4JzfaYeF1fZQoaAZHQG2CYaP0Zm9oB02JA2gIR0ChOGhSDRMOdX2UKGgGR0BejM8kleF+aAdN6ANoCEdAoTjGugYgq3V9lChoBkdAZARBoEjgRGgHTegDaAhHQKE6O64Ds+p1fZQoaAZHQGDY7Xg9/z9oB03oA2gIR0ChOoGcOLBLdX2UKGgGR0Bhb/9YOlO5aAdN6ANoCEdAoTqfL3bmEHV9lChoBkdAX+hqQA+6iGgHTegDaAhHQKE7FFGXokl1fZQoaAZHQGAu6r3j+71oB03oA2gIR0ChPUA7o0Q9dX2UKGgGR0BmKqGSIP9UaAdN6ANoCEdAoT4d1jiGWXV9lChoBkdAXikLa24NJGgHTegDaAhHQKE+uINVinZ1fZQoaAZHQGTxvAwfyPNoB03oA2gIR0ChRCwm/nGLdX2UKGgGR0Ba4mGIsRQKaAdN6ANoCEdAoU+bhky1u3V9lChoBkdAX0yznied1GgHTegDaAhHQKFTKDlo11p1fZQoaAZHQGwn49Pk7wNoB03uAWgIR0ChVXasIVuadX2UKGgGR0BlIjVlPJq7aAdN6ANoCEdAoVX2za9K3HV9lChoBkdAYlhFrEcbSGgHTegDaAhHQKFbdS1maph1fZQoaAZHQHCpo1tO2y9oB01iAmgIR0ChXNTYVZcLdX2UKGgGR0Bw8N1aGHpKaAdNxQJoCEdAoV0OEXcgyXV9lChoBkdAbzKT1TR6W2gHTbgCaAhHQKFdGz544ZN1fZQoaAZHQG/wkt/WlM1oB02ZA2gIR0ChXW6l+EytdX2UKGgGR0BtsV23azu4aAdNdwJoCEdAoV5XAdn003V9lChoBkdAbuX+z+m3v2gHTXUDaAhHQKFg9YOlO451fZQoaAZHQG4PKgZjx1BoB00qAmgIR0ChYm+EIw/QdX2UKGgGR0BxzZVYISlFaAdNbwJoCEdAoWPn0f5k9XV9lChoBkdAZe54XXRPXWgHTegDaAhHQKFkt5aePJd1fZQoaAZHQGFWvaL4vexoB03oA2gIR0ChZPCQ9zOpdX2UKGgGR0BfG5XZGrjpaAdN6ANoCEdAoWc3q7iAD3V9lChoBkdAby5876pHZ2gHTUcCaAhHQKFnf4sVclh1fZQoaAZHQHFhdthuwX9oB01wAmgIR0Cha1AAQxvfdX2UKGgGR0Bw0ZCqp97XaAdNlgFoCEdAoWuJyOq//XV9lChoBkdAbKaM2m51/2gHTW8BaAhHQKFruvTPSlZ1fZQoaAZHQFuTC7sfJV9oB03oA2gIR0ChbFOZb6gvdX2UKGgGR0ByCq+XZ5AyaAdNWQFoCEdAoW3yVjZtenV9lChoBkdAcdMaZQYUFmgHTTECaAhHQKFvYdLg4wR1fZQoaAZHQHAqsLWqcVhoB01UAWgIR0Chb2Ct7rs0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-wl.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fa7d9466c5369a0d20c86880056a6b5cd613cf37da167f3f211f76fe51af72d
3
+ size 146755
ppo-LunarLander-v2-wl/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2-wl/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b4ab9693be0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b4ab9693c70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b4ab9693d00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b4ab9693d90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b4ab9693e20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b4ab9693eb0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b4ab9693f40>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b4ab9698040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b4ab96980d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b4ab9698160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b4ab96981f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b4ab9698280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b4ab963b940>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1697661803526830074,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEYyaj57wNE7qlWAvkuEqTwvju49/3oPvgAAgD8AAIA/mgkHPSl4O7pGTyw4BEaVMj9XZzmFa0S3AACAPwAAgD8zpT88D3xMPcaxEL5iHlm+i9ViujKipLwAAAAAAAAAAACYnTvDwTq6dlhiOs2HsbTE4ZG7PiODuQAAgD8AAIA/mhZtPRTUnLowkM862oizNRix47pTme+5AACAPwAAgD8a7U+9ce1YuTVCbjkfS5g2rFI5O98sj7gAAIA/AACAP9q1sb1xzVS541hZPEHsHLa8Avu5XacdtQAAAAAAAIA/OuIPvnO3jj/m3em9XsqpvmaIzL1Egjk8AAAAAAAAAADN6AE8KdBzug3VTbbrw7QwIU2PuyBJczUAAIA/AACAP3CPhz5c85E+8gAjvh6Feb7wFMa7dHkyvQAAAAAAAAAAflemvl+BdT89HXG+5BeYvhhCcL6CCQU+AAAAAAAAAACAM3i94bikutseyjeesLcyZLiROp7J6LYAAIA/AACAP23vDj72Hxk9QqSavmZEi7576EO9GlwbPQAAAAAAAAAAM7tsPXsGoLr+E4k2M+vQMRK9/Tl1taC1AACAPwAAgD8N4tS9hdAKP9YapDyRYYK+LlpAvc48kz0AAAAAAAAAACauDT7X/Xe7g3O0OssuErg6tbK8CpfjuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFn+64UeuFKMAWyUTegDjAF0lEdAoHxP7cfvF3V9lChoBkdAW9ylpGnXNGgHTegDaAhHQKB8TxQSBbx1fZQoaAZHQF17YqoZQ55oB03oA2gIR0CgfNM2NvOydX2UKGgGR0Bfr9hmXgLraAdN6ANoCEdAoH1nj0cwQHV9lChoBkdAWwcYHgP3BmgHTegDaAhHQKB9k6RyOrB1fZQoaAZHQFhzx2jfvWpoB03oA2gIR0Cgfg39R77bdX2UKGgGR0BiGO3UhFEzaAdN6ANoCEdAoH7b7655JXV9lChoBkdAYh94dIXj2mgHTegDaAhHQKB+6kP+XJJ1fZQoaAZHQFfsWT5ftyBoB03oA2gIR0Cgf5E2YOUddX2UKGgGR0BefDd56dDqaAdN6ANoCEdAoH/7Dn/1hHV9lChoBkdAabXRbbDdg2gHTcQCaAhHQKCeI9g4Otp1fZQoaAZHQGLE5I6Kcd5oB03oA2gIR0CgpfRDLKV6dX2UKGgGR0Bc1nlKbrkbaAdN6ANoCEdAoKslTR6WxHV9lChoBkdAWQf/Ot4iYGgHTegDaAhHQKCu0y2x6fJ1fZQoaAZHQGCZFsHjZL9oB03oA2gIR0CgsKn0kGA1dX2UKGgGR0BZjKtcOby6aAdN6ANoCEdAoLD+j/MnqnV9lChoBkdAYOwP1ct5EGgHTegDaAhHQKCxHPTodMl1fZQoaAZHQGFf+/xlQMxoB03oA2gIR0CgsRwQDmr9dX2UKGgGR0BgjrXjENvwaAdN6ANoCEdAoLGW/WUbDXV9lChoBkdAXV2/k/8l5WgHTegDaAhHQKCyLhkRSP51fZQoaAZHQFlCZ/CqIadoB03oA2gIR0CgslgrpaA4dX2UKGgGR0Bgd8/B3zMBaAdN6ANoCEdAoLLCfOD8L3V9lChoBkdAVYmgoPTXrmgHTegDaAhHQKCzoqwQlKN1fZQoaAZHQFm7jsD4gzRoB03oA2gIR0Cgs65q/M4cdX2UKGgGR0BZTjl1bJOnaAdN6ANoCEdAoLRSQq7ROXV9lChoBkdAYvAIbfgrH2gHTegDaAhHQKC0wQQL/jt1fZQoaAZHQGPSjghr30xoB03oA2gIR0Cg0qrzwtrcdX2UKGgGR0BdT0EcKgIyaAdN6ANoCEdAoNjtuivgWXV9lChoBkdAWtw6r/82rGgHTegDaAhHQKDcf336AOJ1fZQoaAZHQGNwPqTr3TNoB03oA2gIR0Cg3xicwxnGdX2UKGgGR0Betp/smfGuaAdN6ANoCEdAoOC+gSOBD3V9lChoBkdAYYLDTjNpumgHTegDaAhHQKDhDkuHvc91fZQoaAZHQGGQlhPTG5toB03oA2gIR0Cg4Srs0HhTdX2UKGgGR0BbaLqUu+RHaAdN6ANoCEdAoOEp4fOlf3V9lChoBkdAZLXyup0fYGgHTegDaAhHQKDhvlNDc/N1fZQoaAZHQGA7KdhAnlZoB03oA2gIR0Cg4oBshxHYdX2UKGgGR0BcPwM6RyOraAdN6ANoCEdAoOK5yp71I3V9lChoBkdAY/lBKL8762gHTegDaAhHQKDjWtzS1E51fZQoaAZHQGVw3oTwlSloB03oA2gIR0Cg5I1G0/nodX2UKGgGR0BeUNtVJcxCaAdN6ANoCEdAoOSebqhUR3V9lChoBkdAUzl9qk/KQ2gHTegDaAhHQKDlf8YQ8Ol1fZQoaAZHQF8YTnaFmFtoB03oA2gIR0Cg5hKqn3tbdX2UKGgGR0Byox7F85S4aAdNIAFoCEdAoPOC6MBIWnV9lChoBkdAcftbsWweNmgHTbgBaAhHQKD5+rKeTV51fZQoaAZHQGIYI2GZeAxoB03oA2gIR0Cg/5+Y2Kl6dX2UKGgGR0BZavIn0CiiaAdN6ANoCEdAoQYm8f3evnV9lChoBkdAbqe2OyVv/GgHTS4DaAhHQKEInvBrN4Z1fZQoaAZHQGRhe9Ba9sdoB03oA2gIR0ChChUqQRwqdX2UKGgGR0BbPnTy8SPEaAdN6ANoCEdAoQy1LrX18XV9lChoBkdAYqnlg+hXbWgHTegDaAhHQKEOCWWyC4B1fZQoaAZHQGJcKzzErG1oB03oA2gIR0ChDkgQHzH0dX2UKGgGR0BcZsMNMGoraAdN6ANoCEdAoQ5jLKV6eHV9lChoBkdAXz6UTtb9qGgHTegDaAhHQKEOwsiB5HF1fZQoaAZHQGMWHPE87p5oB03oA2gIR0ChDzH8baRIdX2UKGgGR0Bg5nQF9roGaAdN6ANoCEdAoRClMsYl6nV9lChoBkdAY/tpwjt5U2gHTegDaAhHQKEQsHt4RmN1fZQoaAZHQFuCwW3z+WJoB03oA2gIR0ChEWe5e7cxdX2UKGgGR0BgyJNRFZxJaAdN6ANoCEdAoRHsKzAvc3V9lChoBkdAYLkK6WgOBmgHTegDaAhHQKEeFydWhh91fZQoaAZHQEZzsKLKmsNoB0vfaAhHQKEe9QhOgxt1fZQoaAZHQHHWTGYKIBRoB00GAmgIR0ChIM9F4LThdX2UKGgGR0BwzRwOvt+kaAdNGQJoCEdAoSL3eP7vX3V9lChoBkdAYByzabnX/mgHTegDaAhHQKEmY6YE4ed1fZQoaAZHQF9xEDhcZ+BoB03oA2gIR0ChLbOJcgQpdX2UKGgGR0BeHTk+5e7daAdN6ANoCEdAoTMW/8EV33V9lChoBkdAcbdFLFn7HmgHTTECaAhHQKE4JzfaYeF1fZQoaAZHQG2CYaP0Zm9oB02JA2gIR0ChOGhSDRMOdX2UKGgGR0BejM8kleF+aAdN6ANoCEdAoTjGugYgq3V9lChoBkdAZARBoEjgRGgHTegDaAhHQKE6O64Ds+p1fZQoaAZHQGDY7Xg9/z9oB03oA2gIR0ChOoGcOLBLdX2UKGgGR0Bhb/9YOlO5aAdN6ANoCEdAoTqfL3bmEHV9lChoBkdAX+hqQA+6iGgHTegDaAhHQKE7FFGXokl1fZQoaAZHQGAu6r3j+71oB03oA2gIR0ChPUA7o0Q9dX2UKGgGR0BmKqGSIP9UaAdN6ANoCEdAoT4d1jiGWXV9lChoBkdAXikLa24NJGgHTegDaAhHQKE+uINVinZ1fZQoaAZHQGTxvAwfyPNoB03oA2gIR0ChRCwm/nGLdX2UKGgGR0Ba4mGIsRQKaAdN6ANoCEdAoU+bhky1u3V9lChoBkdAX0yznied1GgHTegDaAhHQKFTKDlo11p1fZQoaAZHQGwn49Pk7wNoB03uAWgIR0ChVXasIVuadX2UKGgGR0BlIjVlPJq7aAdN6ANoCEdAoVX2za9K3HV9lChoBkdAYlhFrEcbSGgHTegDaAhHQKFbdS1maph1fZQoaAZHQHCpo1tO2y9oB01iAmgIR0ChXNTYVZcLdX2UKGgGR0Bw8N1aGHpKaAdNxQJoCEdAoV0OEXcgyXV9lChoBkdAbzKT1TR6W2gHTbgCaAhHQKFdGz544ZN1fZQoaAZHQG/wkt/WlM1oB02ZA2gIR0ChXW6l+EytdX2UKGgGR0BtsV23azu4aAdNdwJoCEdAoV5XAdn003V9lChoBkdAbuX+z+m3v2gHTXUDaAhHQKFg9YOlO451fZQoaAZHQG4PKgZjx1BoB00qAmgIR0ChYm+EIw/QdX2UKGgGR0BxzZVYISlFaAdNbwJoCEdAoWPn0f5k9XV9lChoBkdAZe54XXRPXWgHTegDaAhHQKFkt5aePJd1fZQoaAZHQGFWvaL4vexoB03oA2gIR0ChZPCQ9zOpdX2UKGgGR0BfG5XZGrjpaAdN6ANoCEdAoWc3q7iAD3V9lChoBkdAby5876pHZ2gHTUcCaAhHQKFnf4sVclh1fZQoaAZHQHFhdthuwX9oB01wAmgIR0Cha1AAQxvfdX2UKGgGR0Bw0ZCqp97XaAdNlgFoCEdAoWuJyOq//XV9lChoBkdAbKaM2m51/2gHTW8BaAhHQKFruvTPSlZ1fZQoaAZHQFuTC7sfJV9oB03oA2gIR0ChbFOZb6gvdX2UKGgGR0ByCq+XZ5AyaAdNWQFoCEdAoW3yVjZtenV9lChoBkdAcdMaZQYUFmgHTTECaAhHQKFvYdLg4wR1fZQoaAZHQHAqsLWqcVhoB01UAWgIR0Chb2Ct7rs0dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2-wl/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a47eef5e7923f854519cb54b46f32dd400637cb914ffa267159dab030a0ca3c5
3
+ size 87929
ppo-LunarLander-v2-wl/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dbe8101a08bcc4add90e6f68d2bd69b3670580c74e7c0e380d9067214caaacf
3
+ size 43329
ppo-LunarLander-v2-wl/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-wl/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (184 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 258.2948023, "std_reward": 20.01570447269069, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-18T21:19:22.679907"}