root@autodl-container-32ce119752-f4e7b2aa
commited on
Commit
·
080a309
1
Parent(s):
f01df56
model upload
Browse files- cnn-chinanews-chinese/README.md +10 -0
- cnn-chinanews-chinese/config.json +1 -0
- cnn-chinanews-chinese/pytorch_model.bin +3 -0
- cnn-chinanews-chinese/train_log.txt +63 -0
- cnn-chinanews-chinese/training_args.json +1 -0
- cnn-chnsenticorp-chinese/README.md +10 -0
- cnn-chnsenticorp-chinese/config.json +1 -0
- cnn-chnsenticorp-chinese/pytorch_model.bin +3 -0
- cnn-chnsenticorp-chinese/train_log.txt +64 -0
- cnn-chnsenticorp-chinese/training_args.json +1 -0
- lstm-chinanews-chinese/README.md +10 -0
- lstm-chinanews-chinese/config.json +1 -0
- lstm-chinanews-chinese/pytorch_model.bin +3 -0
- lstm-chinanews-chinese/train_log.txt +64 -0
- lstm-chinanews-chinese/training_args.json +1 -0
- lstm-chnsenticorp-chinese/README.md +10 -0
- lstm-chnsenticorp-chinese/config.json +1 -0
- lstm-chnsenticorp-chinese/pytorch_model.bin +3 -0
- lstm-chnsenticorp-chinese/train_log.txt +67 -0
- lstm-chnsenticorp-chinese/training_args.json +1 -0
cnn-chinanews-chinese/README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## TextAttack Model Card
|
2 |
+
|
3 |
+
This model was fine-tuned using TextAttack. The model was fine-tuned
|
4 |
+
for 10 epochs with a batch size of 16,
|
5 |
+
and an initial learning rate of 0.0002.
|
6 |
+
Since this was a classification task, the model was trained with a cross-entropy loss function.
|
7 |
+
The best score the model achieved on this task was 0.8842, as measured by the
|
8 |
+
eval set accuracy, found after 2 epochs.
|
9 |
+
|
10 |
+
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
cnn-chinanews-chinese/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"architectures": "WordCNNForClassification", "hidden_size": 150, "dropout": 0.3, "num_labels": 2, "max_seq_length": 128, "model_path": null, "emb_layer_trainable": true}
|
cnn-chinanews-chinese/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17c320a4c4daeb8867144410c627d33f15335e506ade22331addce36278fc95a
|
3 |
+
size 765335626
|
cnn-chinanews-chinese/train_log.txt
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Writing logs to ./outputs/2024-03-04-17-36-59-095657/train_log.txt.
|
2 |
+
Wrote original training args to ./outputs/2024-03-04-17-36-59-095657/training_args.json.
|
3 |
+
***** Running training *****
|
4 |
+
Num examples = 50000
|
5 |
+
Num epochs = 10
|
6 |
+
Num clean epochs = 10
|
7 |
+
Instantaneous batch size per device = 16
|
8 |
+
Total train batch size (w. parallel, distributed & accumulation) = 16
|
9 |
+
Gradient accumulation steps = 1
|
10 |
+
Total optimization steps = 31250
|
11 |
+
==========================================================
|
12 |
+
Epoch 1
|
13 |
+
Running clean epoch 1/10
|
14 |
+
Train accuracy: 78.91%
|
15 |
+
Eval accuracy: 87.58%
|
16 |
+
Best score found. Saved model to ./outputs/2024-03-04-17-36-59-095657/best_model/
|
17 |
+
==========================================================
|
18 |
+
Epoch 2
|
19 |
+
Running clean epoch 2/10
|
20 |
+
Train accuracy: 90.36%
|
21 |
+
Eval accuracy: 88.42%
|
22 |
+
Best score found. Saved model to ./outputs/2024-03-04-17-36-59-095657/best_model/
|
23 |
+
==========================================================
|
24 |
+
Epoch 3
|
25 |
+
Running clean epoch 3/10
|
26 |
+
Train accuracy: 94.05%
|
27 |
+
Eval accuracy: 88.36%
|
28 |
+
==========================================================
|
29 |
+
Epoch 4
|
30 |
+
Running clean epoch 4/10
|
31 |
+
Train accuracy: 96.72%
|
32 |
+
Eval accuracy: 87.84%
|
33 |
+
==========================================================
|
34 |
+
Epoch 5
|
35 |
+
Running clean epoch 5/10
|
36 |
+
Train accuracy: 98.54%
|
37 |
+
Eval accuracy: 87.60%
|
38 |
+
==========================================================
|
39 |
+
Epoch 6
|
40 |
+
Running clean epoch 6/10
|
41 |
+
Train accuracy: 99.33%
|
42 |
+
Eval accuracy: 86.59%
|
43 |
+
==========================================================
|
44 |
+
Epoch 7
|
45 |
+
Running clean epoch 7/10
|
46 |
+
Train accuracy: 99.75%
|
47 |
+
Eval accuracy: 86.52%
|
48 |
+
==========================================================
|
49 |
+
Epoch 8
|
50 |
+
Running clean epoch 8/10
|
51 |
+
Train accuracy: 99.91%
|
52 |
+
Eval accuracy: 86.28%
|
53 |
+
==========================================================
|
54 |
+
Epoch 9
|
55 |
+
Running clean epoch 9/10
|
56 |
+
Train accuracy: 99.96%
|
57 |
+
Eval accuracy: 86.42%
|
58 |
+
==========================================================
|
59 |
+
Epoch 10
|
60 |
+
Running clean epoch 10/10
|
61 |
+
Train accuracy: 99.96%
|
62 |
+
Eval accuracy: 86.06%
|
63 |
+
Wrote README to ./outputs/2024-03-04-17-36-59-095657/README.md.
|
cnn-chinanews-chinese/training_args.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"num_epochs": 10, "num_clean_epochs": 1, "attack_epoch_interval": 1, "early_stopping_epochs": null, "learning_rate": 0.0002, "num_warmup_steps": 500, "weight_decay": 0.01, "per_device_train_batch_size": 16, "per_device_eval_batch_size": 32, "gradient_accumulation_steps": 1, "random_seed": 718, "parallel": false, "load_best_model_at_end": false, "alpha": 1.0, "num_train_adv_examples": -1, "query_budget_train": null, "attack_num_workers_per_device": 1, "output_dir": "./outputs/2024-03-04-17-36-59-095657", "checkpoint_interval_steps": null, "checkpoint_interval_epochs": null, "save_last": true, "log_to_tb": false, "tb_log_dir": null, "log_to_wandb": false, "wandb_project": "textattack", "logging_interval_step": 1}
|
cnn-chnsenticorp-chinese/README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## TextAttack Model Card
|
2 |
+
|
3 |
+
This model was fine-tuned using TextAttack. The model was fine-tuned
|
4 |
+
for 10 epochs with a batch size of 16,
|
5 |
+
and an initial learning rate of 0.0002.
|
6 |
+
Since this was a classification task, the model was trained with a cross-entropy loss function.
|
7 |
+
The best score the model achieved on this task was 0.8966666666666666, as measured by the
|
8 |
+
eval set accuracy, found after 3 epochs.
|
9 |
+
|
10 |
+
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
cnn-chnsenticorp-chinese/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"architectures": "WordCNNForClassification", "hidden_size": 150, "dropout": 0.3, "num_labels": 2, "max_seq_length": 128, "model_path": null, "emb_layer_trainable": true}
|
cnn-chnsenticorp-chinese/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9794c7a2ee57d0b61814f9a2d8e5f8455d2cd99ebf965aec6f1ff12ae507a46
|
3 |
+
size 765326666
|
cnn-chnsenticorp-chinese/train_log.txt
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Writing logs to ./outputs/2024-03-02-22-47-16-038201/train_log.txt.
|
2 |
+
Wrote original training args to ./outputs/2024-03-02-22-47-16-038201/training_args.json.
|
3 |
+
***** Running training *****
|
4 |
+
Num examples = 9600
|
5 |
+
Num epochs = 10
|
6 |
+
Num clean epochs = 10
|
7 |
+
Instantaneous batch size per device = 16
|
8 |
+
Total train batch size (w. parallel, distributed & accumulation) = 16
|
9 |
+
Gradient accumulation steps = 1
|
10 |
+
Total optimization steps = 6000
|
11 |
+
==========================================================
|
12 |
+
Epoch 1
|
13 |
+
Running clean epoch 1/10
|
14 |
+
Train accuracy: 73.18%
|
15 |
+
Eval accuracy: 82.58%
|
16 |
+
Best score found. Saved model to ./outputs/2024-03-02-22-47-16-038201/best_model/
|
17 |
+
==========================================================
|
18 |
+
Epoch 2
|
19 |
+
Running clean epoch 2/10
|
20 |
+
Train accuracy: 88.45%
|
21 |
+
Eval accuracy: 86.92%
|
22 |
+
Best score found. Saved model to ./outputs/2024-03-02-22-47-16-038201/best_model/
|
23 |
+
==========================================================
|
24 |
+
Epoch 3
|
25 |
+
Running clean epoch 3/10
|
26 |
+
Train accuracy: 93.04%
|
27 |
+
Eval accuracy: 89.67%
|
28 |
+
Best score found. Saved model to ./outputs/2024-03-02-22-47-16-038201/best_model/
|
29 |
+
==========================================================
|
30 |
+
Epoch 4
|
31 |
+
Running clean epoch 4/10
|
32 |
+
Train accuracy: 96.05%
|
33 |
+
Eval accuracy: 88.75%
|
34 |
+
==========================================================
|
35 |
+
Epoch 5
|
36 |
+
Running clean epoch 5/10
|
37 |
+
Train accuracy: 97.74%
|
38 |
+
Eval accuracy: 89.50%
|
39 |
+
==========================================================
|
40 |
+
Epoch 6
|
41 |
+
Running clean epoch 6/10
|
42 |
+
Train accuracy: 98.78%
|
43 |
+
Eval accuracy: 89.50%
|
44 |
+
==========================================================
|
45 |
+
Epoch 7
|
46 |
+
Running clean epoch 7/10
|
47 |
+
Train accuracy: 99.17%
|
48 |
+
Eval accuracy: 89.33%
|
49 |
+
==========================================================
|
50 |
+
Epoch 8
|
51 |
+
Running clean epoch 8/10
|
52 |
+
Train accuracy: 99.22%
|
53 |
+
Eval accuracy: 88.92%
|
54 |
+
==========================================================
|
55 |
+
Epoch 9
|
56 |
+
Running clean epoch 9/10
|
57 |
+
Train accuracy: 99.43%
|
58 |
+
Eval accuracy: 89.17%
|
59 |
+
==========================================================
|
60 |
+
Epoch 10
|
61 |
+
Running clean epoch 10/10
|
62 |
+
Train accuracy: 99.41%
|
63 |
+
Eval accuracy: 88.17%
|
64 |
+
Wrote README to ./outputs/2024-03-02-22-47-16-038201/README.md.
|
cnn-chnsenticorp-chinese/training_args.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"num_epochs": 10, "num_clean_epochs": 1, "attack_epoch_interval": 1, "early_stopping_epochs": null, "learning_rate": 0.0002, "num_warmup_steps": 500, "weight_decay": 0.01, "per_device_train_batch_size": 16, "per_device_eval_batch_size": 32, "gradient_accumulation_steps": 1, "random_seed": 718, "parallel": false, "load_best_model_at_end": false, "alpha": 1.0, "num_train_adv_examples": -1, "query_budget_train": null, "attack_num_workers_per_device": 1, "output_dir": "./outputs/2024-03-02-22-47-16-038201", "checkpoint_interval_steps": null, "checkpoint_interval_epochs": null, "save_last": true, "log_to_tb": false, "tb_log_dir": null, "log_to_wandb": false, "wandb_project": "textattack", "logging_interval_step": 1}
|
lstm-chinanews-chinese/README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## TextAttack Model Card
|
2 |
+
|
3 |
+
This model was fine-tuned using TextAttack. The model was fine-tuned
|
4 |
+
for 10 epochs with a batch size of 16,
|
5 |
+
and an initial learning rate of 0.0002.
|
6 |
+
Since this was a classification task, the model was trained with a cross-entropy loss function.
|
7 |
+
The best score the model achieved on this task was 0.8767, as measured by the
|
8 |
+
eval set accuracy, found after 3 epochs.
|
9 |
+
|
10 |
+
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
lstm-chinanews-chinese/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"architectures": "LSTMForClassification", "hidden_size": 150, "depth": 1, "dropout": 0.3, "num_labels": 2, "max_seq_length": 128, "model_path": null, "emb_layer_trainable": true}
|
lstm-chinanews-chinese/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09d1e39a6965e05c1dcb27dc2ba86a7b06d686812ca359d4fc440282535be04a
|
3 |
+
size 764070671
|
lstm-chinanews-chinese/train_log.txt
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Writing logs to ./outputs/2024-03-04-17-14-45-472632/train_log.txt.
|
2 |
+
Wrote original training args to ./outputs/2024-03-04-17-14-45-472632/training_args.json.
|
3 |
+
***** Running training *****
|
4 |
+
Num examples = 50000
|
5 |
+
Num epochs = 10
|
6 |
+
Num clean epochs = 10
|
7 |
+
Instantaneous batch size per device = 16
|
8 |
+
Total train batch size (w. parallel, distributed & accumulation) = 16
|
9 |
+
Gradient accumulation steps = 1
|
10 |
+
Total optimization steps = 31250
|
11 |
+
==========================================================
|
12 |
+
Epoch 1
|
13 |
+
Running clean epoch 1/10
|
14 |
+
Train accuracy: 73.86%
|
15 |
+
Eval accuracy: 85.25%
|
16 |
+
Best score found. Saved model to ./outputs/2024-03-04-17-14-45-472632/best_model/
|
17 |
+
==========================================================
|
18 |
+
Epoch 2
|
19 |
+
Running clean epoch 2/10
|
20 |
+
Train accuracy: 88.42%
|
21 |
+
Eval accuracy: 87.05%
|
22 |
+
Best score found. Saved model to ./outputs/2024-03-04-17-14-45-472632/best_model/
|
23 |
+
==========================================================
|
24 |
+
Epoch 3
|
25 |
+
Running clean epoch 3/10
|
26 |
+
Train accuracy: 92.21%
|
27 |
+
Eval accuracy: 87.67%
|
28 |
+
Best score found. Saved model to ./outputs/2024-03-04-17-14-45-472632/best_model/
|
29 |
+
==========================================================
|
30 |
+
Epoch 4
|
31 |
+
Running clean epoch 4/10
|
32 |
+
Train accuracy: 94.91%
|
33 |
+
Eval accuracy: 87.34%
|
34 |
+
==========================================================
|
35 |
+
Epoch 5
|
36 |
+
Running clean epoch 5/10
|
37 |
+
Train accuracy: 97.15%
|
38 |
+
Eval accuracy: 87.03%
|
39 |
+
==========================================================
|
40 |
+
Epoch 6
|
41 |
+
Running clean epoch 6/10
|
42 |
+
Train accuracy: 98.45%
|
43 |
+
Eval accuracy: 86.12%
|
44 |
+
==========================================================
|
45 |
+
Epoch 7
|
46 |
+
Running clean epoch 7/10
|
47 |
+
Train accuracy: 99.25%
|
48 |
+
Eval accuracy: 85.90%
|
49 |
+
==========================================================
|
50 |
+
Epoch 8
|
51 |
+
Running clean epoch 8/10
|
52 |
+
Train accuracy: 99.60%
|
53 |
+
Eval accuracy: 85.51%
|
54 |
+
==========================================================
|
55 |
+
Epoch 9
|
56 |
+
Running clean epoch 9/10
|
57 |
+
Train accuracy: 99.82%
|
58 |
+
Eval accuracy: 85.36%
|
59 |
+
==========================================================
|
60 |
+
Epoch 10
|
61 |
+
Running clean epoch 10/10
|
62 |
+
Train accuracy: 99.91%
|
63 |
+
Eval accuracy: 84.99%
|
64 |
+
Wrote README to ./outputs/2024-03-04-17-14-45-472632/README.md.
|
lstm-chinanews-chinese/training_args.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"num_epochs": 10, "num_clean_epochs": 1, "attack_epoch_interval": 1, "early_stopping_epochs": null, "learning_rate": 0.0002, "num_warmup_steps": 500, "weight_decay": 0.01, "per_device_train_batch_size": 16, "per_device_eval_batch_size": 32, "gradient_accumulation_steps": 1, "random_seed": 718, "parallel": false, "load_best_model_at_end": false, "alpha": 1.0, "num_train_adv_examples": -1, "query_budget_train": null, "attack_num_workers_per_device": 1, "output_dir": "./outputs/2024-03-04-17-14-45-472632", "checkpoint_interval_steps": null, "checkpoint_interval_epochs": null, "save_last": true, "log_to_tb": false, "tb_log_dir": null, "log_to_wandb": false, "wandb_project": "textattack", "logging_interval_step": 1}
|
lstm-chnsenticorp-chinese/README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## TextAttack Model Card
|
2 |
+
|
3 |
+
This model was fine-tuned using TextAttack. The model was fine-tuned
|
4 |
+
for 10 epochs with a batch size of 16,
|
5 |
+
and an initial learning rate of 0.0002.
|
6 |
+
Since this was a classification task, the model was trained with a cross-entropy loss function.
|
7 |
+
The best score the model achieved on this task was 0.8983333333333333, as measured by the
|
8 |
+
eval set accuracy, found after 7 epochs.
|
9 |
+
|
10 |
+
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
lstm-chnsenticorp-chinese/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"architectures": "LSTMForClassification", "hidden_size": 150, "depth": 1, "dropout": 0.3, "num_labels": 2, "max_seq_length": 128, "model_path": null, "emb_layer_trainable": true}
|
lstm-chnsenticorp-chinese/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9db315e2c8c53b0a5f53bad2628d634641507b2fa2ece02942c1f5baa2ce36dc
|
3 |
+
size 764067663
|
lstm-chnsenticorp-chinese/train_log.txt
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Writing logs to ./outputs/2024-03-02-22-34-05-343811/train_log.txt.
|
2 |
+
Wrote original training args to ./outputs/2024-03-02-22-34-05-343811/training_args.json.
|
3 |
+
***** Running training *****
|
4 |
+
Num examples = 9600
|
5 |
+
Num epochs = 10
|
6 |
+
Num clean epochs = 10
|
7 |
+
Instantaneous batch size per device = 16
|
8 |
+
Total train batch size (w. parallel, distributed & accumulation) = 16
|
9 |
+
Gradient accumulation steps = 1
|
10 |
+
Total optimization steps = 6000
|
11 |
+
==========================================================
|
12 |
+
Epoch 1
|
13 |
+
Running clean epoch 1/10
|
14 |
+
Train accuracy: 69.30%
|
15 |
+
Eval accuracy: 75.33%
|
16 |
+
Best score found. Saved model to ./outputs/2024-03-02-22-34-05-343811/best_model/
|
17 |
+
==========================================================
|
18 |
+
Epoch 2
|
19 |
+
Running clean epoch 2/10
|
20 |
+
Train accuracy: 84.70%
|
21 |
+
Eval accuracy: 85.50%
|
22 |
+
Best score found. Saved model to ./outputs/2024-03-02-22-34-05-343811/best_model/
|
23 |
+
==========================================================
|
24 |
+
Epoch 3
|
25 |
+
Running clean epoch 3/10
|
26 |
+
Train accuracy: 90.29%
|
27 |
+
Eval accuracy: 87.92%
|
28 |
+
Best score found. Saved model to ./outputs/2024-03-02-22-34-05-343811/best_model/
|
29 |
+
==========================================================
|
30 |
+
Epoch 4
|
31 |
+
Running clean epoch 4/10
|
32 |
+
Train accuracy: 93.79%
|
33 |
+
Eval accuracy: 89.00%
|
34 |
+
Best score found. Saved model to ./outputs/2024-03-02-22-34-05-343811/best_model/
|
35 |
+
==========================================================
|
36 |
+
Epoch 5
|
37 |
+
Running clean epoch 5/10
|
38 |
+
Train accuracy: 96.18%
|
39 |
+
Eval accuracy: 88.67%
|
40 |
+
==========================================================
|
41 |
+
Epoch 6
|
42 |
+
Running clean epoch 6/10
|
43 |
+
Train accuracy: 97.52%
|
44 |
+
Eval accuracy: 89.50%
|
45 |
+
Best score found. Saved model to ./outputs/2024-03-02-22-34-05-343811/best_model/
|
46 |
+
==========================================================
|
47 |
+
Epoch 7
|
48 |
+
Running clean epoch 7/10
|
49 |
+
Train accuracy: 98.43%
|
50 |
+
Eval accuracy: 89.83%
|
51 |
+
Best score found. Saved model to ./outputs/2024-03-02-22-34-05-343811/best_model/
|
52 |
+
==========================================================
|
53 |
+
Epoch 8
|
54 |
+
Running clean epoch 8/10
|
55 |
+
Train accuracy: 98.95%
|
56 |
+
Eval accuracy: 88.92%
|
57 |
+
==========================================================
|
58 |
+
Epoch 9
|
59 |
+
Running clean epoch 9/10
|
60 |
+
Train accuracy: 99.25%
|
61 |
+
Eval accuracy: 89.17%
|
62 |
+
==========================================================
|
63 |
+
Epoch 10
|
64 |
+
Running clean epoch 10/10
|
65 |
+
Train accuracy: 99.39%
|
66 |
+
Eval accuracy: 88.42%
|
67 |
+
Wrote README to ./outputs/2024-03-02-22-34-05-343811/README.md.
|
lstm-chnsenticorp-chinese/training_args.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"num_epochs": 10, "num_clean_epochs": 1, "attack_epoch_interval": 1, "early_stopping_epochs": null, "learning_rate": 0.0002, "num_warmup_steps": 500, "weight_decay": 0.01, "per_device_train_batch_size": 16, "per_device_eval_batch_size": 32, "gradient_accumulation_steps": 1, "random_seed": 718, "parallel": false, "load_best_model_at_end": false, "alpha": 1.0, "num_train_adv_examples": -1, "query_budget_train": null, "attack_num_workers_per_device": 1, "output_dir": "./outputs/2024-03-02-22-34-05-343811", "checkpoint_interval_steps": null, "checkpoint_interval_epochs": null, "save_last": true, "log_to_tb": false, "tb_log_dir": null, "log_to_wandb": false, "wandb_project": "textattack", "logging_interval_step": 1}
|