root@autodl-container-32ce119752-f4e7b2aa commited on
Commit
080a309
·
1 Parent(s): f01df56

model upload

Browse files
cnn-chinanews-chinese/README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ## TextAttack Model Card
2
+
3
+ This model was fine-tuned using TextAttack. The model was fine-tuned
4
+ for 10 epochs with a batch size of 16,
5
+ and an initial learning rate of 0.0002.
6
+ Since this was a classification task, the model was trained with a cross-entropy loss function.
7
+ The best score the model achieved on this task was 0.8842, as measured by the
8
+ eval set accuracy, found after 2 epochs.
9
+
10
+ For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
cnn-chinanews-chinese/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"architectures": "WordCNNForClassification", "hidden_size": 150, "dropout": 0.3, "num_labels": 2, "max_seq_length": 128, "model_path": null, "emb_layer_trainable": true}
cnn-chinanews-chinese/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17c320a4c4daeb8867144410c627d33f15335e506ade22331addce36278fc95a
3
+ size 765335626
cnn-chinanews-chinese/train_log.txt ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Writing logs to ./outputs/2024-03-04-17-36-59-095657/train_log.txt.
2
+ Wrote original training args to ./outputs/2024-03-04-17-36-59-095657/training_args.json.
3
+ ***** Running training *****
4
+ Num examples = 50000
5
+ Num epochs = 10
6
+ Num clean epochs = 10
7
+ Instantaneous batch size per device = 16
8
+ Total train batch size (w. parallel, distributed & accumulation) = 16
9
+ Gradient accumulation steps = 1
10
+ Total optimization steps = 31250
11
+ ==========================================================
12
+ Epoch 1
13
+ Running clean epoch 1/10
14
+ Train accuracy: 78.91%
15
+ Eval accuracy: 87.58%
16
+ Best score found. Saved model to ./outputs/2024-03-04-17-36-59-095657/best_model/
17
+ ==========================================================
18
+ Epoch 2
19
+ Running clean epoch 2/10
20
+ Train accuracy: 90.36%
21
+ Eval accuracy: 88.42%
22
+ Best score found. Saved model to ./outputs/2024-03-04-17-36-59-095657/best_model/
23
+ ==========================================================
24
+ Epoch 3
25
+ Running clean epoch 3/10
26
+ Train accuracy: 94.05%
27
+ Eval accuracy: 88.36%
28
+ ==========================================================
29
+ Epoch 4
30
+ Running clean epoch 4/10
31
+ Train accuracy: 96.72%
32
+ Eval accuracy: 87.84%
33
+ ==========================================================
34
+ Epoch 5
35
+ Running clean epoch 5/10
36
+ Train accuracy: 98.54%
37
+ Eval accuracy: 87.60%
38
+ ==========================================================
39
+ Epoch 6
40
+ Running clean epoch 6/10
41
+ Train accuracy: 99.33%
42
+ Eval accuracy: 86.59%
43
+ ==========================================================
44
+ Epoch 7
45
+ Running clean epoch 7/10
46
+ Train accuracy: 99.75%
47
+ Eval accuracy: 86.52%
48
+ ==========================================================
49
+ Epoch 8
50
+ Running clean epoch 8/10
51
+ Train accuracy: 99.91%
52
+ Eval accuracy: 86.28%
53
+ ==========================================================
54
+ Epoch 9
55
+ Running clean epoch 9/10
56
+ Train accuracy: 99.96%
57
+ Eval accuracy: 86.42%
58
+ ==========================================================
59
+ Epoch 10
60
+ Running clean epoch 10/10
61
+ Train accuracy: 99.96%
62
+ Eval accuracy: 86.06%
63
+ Wrote README to ./outputs/2024-03-04-17-36-59-095657/README.md.
cnn-chinanews-chinese/training_args.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"num_epochs": 10, "num_clean_epochs": 1, "attack_epoch_interval": 1, "early_stopping_epochs": null, "learning_rate": 0.0002, "num_warmup_steps": 500, "weight_decay": 0.01, "per_device_train_batch_size": 16, "per_device_eval_batch_size": 32, "gradient_accumulation_steps": 1, "random_seed": 718, "parallel": false, "load_best_model_at_end": false, "alpha": 1.0, "num_train_adv_examples": -1, "query_budget_train": null, "attack_num_workers_per_device": 1, "output_dir": "./outputs/2024-03-04-17-36-59-095657", "checkpoint_interval_steps": null, "checkpoint_interval_epochs": null, "save_last": true, "log_to_tb": false, "tb_log_dir": null, "log_to_wandb": false, "wandb_project": "textattack", "logging_interval_step": 1}
cnn-chnsenticorp-chinese/README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ## TextAttack Model Card
2
+
3
+ This model was fine-tuned using TextAttack. The model was fine-tuned
4
+ for 10 epochs with a batch size of 16,
5
+ and an initial learning rate of 0.0002.
6
+ Since this was a classification task, the model was trained with a cross-entropy loss function.
7
+ The best score the model achieved on this task was 0.8966666666666666, as measured by the
8
+ eval set accuracy, found after 3 epochs.
9
+
10
+ For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
cnn-chnsenticorp-chinese/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"architectures": "WordCNNForClassification", "hidden_size": 150, "dropout": 0.3, "num_labels": 2, "max_seq_length": 128, "model_path": null, "emb_layer_trainable": true}
cnn-chnsenticorp-chinese/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9794c7a2ee57d0b61814f9a2d8e5f8455d2cd99ebf965aec6f1ff12ae507a46
3
+ size 765326666
cnn-chnsenticorp-chinese/train_log.txt ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Writing logs to ./outputs/2024-03-02-22-47-16-038201/train_log.txt.
2
+ Wrote original training args to ./outputs/2024-03-02-22-47-16-038201/training_args.json.
3
+ ***** Running training *****
4
+ Num examples = 9600
5
+ Num epochs = 10
6
+ Num clean epochs = 10
7
+ Instantaneous batch size per device = 16
8
+ Total train batch size (w. parallel, distributed & accumulation) = 16
9
+ Gradient accumulation steps = 1
10
+ Total optimization steps = 6000
11
+ ==========================================================
12
+ Epoch 1
13
+ Running clean epoch 1/10
14
+ Train accuracy: 73.18%
15
+ Eval accuracy: 82.58%
16
+ Best score found. Saved model to ./outputs/2024-03-02-22-47-16-038201/best_model/
17
+ ==========================================================
18
+ Epoch 2
19
+ Running clean epoch 2/10
20
+ Train accuracy: 88.45%
21
+ Eval accuracy: 86.92%
22
+ Best score found. Saved model to ./outputs/2024-03-02-22-47-16-038201/best_model/
23
+ ==========================================================
24
+ Epoch 3
25
+ Running clean epoch 3/10
26
+ Train accuracy: 93.04%
27
+ Eval accuracy: 89.67%
28
+ Best score found. Saved model to ./outputs/2024-03-02-22-47-16-038201/best_model/
29
+ ==========================================================
30
+ Epoch 4
31
+ Running clean epoch 4/10
32
+ Train accuracy: 96.05%
33
+ Eval accuracy: 88.75%
34
+ ==========================================================
35
+ Epoch 5
36
+ Running clean epoch 5/10
37
+ Train accuracy: 97.74%
38
+ Eval accuracy: 89.50%
39
+ ==========================================================
40
+ Epoch 6
41
+ Running clean epoch 6/10
42
+ Train accuracy: 98.78%
43
+ Eval accuracy: 89.50%
44
+ ==========================================================
45
+ Epoch 7
46
+ Running clean epoch 7/10
47
+ Train accuracy: 99.17%
48
+ Eval accuracy: 89.33%
49
+ ==========================================================
50
+ Epoch 8
51
+ Running clean epoch 8/10
52
+ Train accuracy: 99.22%
53
+ Eval accuracy: 88.92%
54
+ ==========================================================
55
+ Epoch 9
56
+ Running clean epoch 9/10
57
+ Train accuracy: 99.43%
58
+ Eval accuracy: 89.17%
59
+ ==========================================================
60
+ Epoch 10
61
+ Running clean epoch 10/10
62
+ Train accuracy: 99.41%
63
+ Eval accuracy: 88.17%
64
+ Wrote README to ./outputs/2024-03-02-22-47-16-038201/README.md.
cnn-chnsenticorp-chinese/training_args.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"num_epochs": 10, "num_clean_epochs": 1, "attack_epoch_interval": 1, "early_stopping_epochs": null, "learning_rate": 0.0002, "num_warmup_steps": 500, "weight_decay": 0.01, "per_device_train_batch_size": 16, "per_device_eval_batch_size": 32, "gradient_accumulation_steps": 1, "random_seed": 718, "parallel": false, "load_best_model_at_end": false, "alpha": 1.0, "num_train_adv_examples": -1, "query_budget_train": null, "attack_num_workers_per_device": 1, "output_dir": "./outputs/2024-03-02-22-47-16-038201", "checkpoint_interval_steps": null, "checkpoint_interval_epochs": null, "save_last": true, "log_to_tb": false, "tb_log_dir": null, "log_to_wandb": false, "wandb_project": "textattack", "logging_interval_step": 1}
lstm-chinanews-chinese/README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ## TextAttack Model Card
2
+
3
+ This model was fine-tuned using TextAttack. The model was fine-tuned
4
+ for 10 epochs with a batch size of 16,
5
+ and an initial learning rate of 0.0002.
6
+ Since this was a classification task, the model was trained with a cross-entropy loss function.
7
+ The best score the model achieved on this task was 0.8767, as measured by the
8
+ eval set accuracy, found after 3 epochs.
9
+
10
+ For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
lstm-chinanews-chinese/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"architectures": "LSTMForClassification", "hidden_size": 150, "depth": 1, "dropout": 0.3, "num_labels": 2, "max_seq_length": 128, "model_path": null, "emb_layer_trainable": true}
lstm-chinanews-chinese/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09d1e39a6965e05c1dcb27dc2ba86a7b06d686812ca359d4fc440282535be04a
3
+ size 764070671
lstm-chinanews-chinese/train_log.txt ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Writing logs to ./outputs/2024-03-04-17-14-45-472632/train_log.txt.
2
+ Wrote original training args to ./outputs/2024-03-04-17-14-45-472632/training_args.json.
3
+ ***** Running training *****
4
+ Num examples = 50000
5
+ Num epochs = 10
6
+ Num clean epochs = 10
7
+ Instantaneous batch size per device = 16
8
+ Total train batch size (w. parallel, distributed & accumulation) = 16
9
+ Gradient accumulation steps = 1
10
+ Total optimization steps = 31250
11
+ ==========================================================
12
+ Epoch 1
13
+ Running clean epoch 1/10
14
+ Train accuracy: 73.86%
15
+ Eval accuracy: 85.25%
16
+ Best score found. Saved model to ./outputs/2024-03-04-17-14-45-472632/best_model/
17
+ ==========================================================
18
+ Epoch 2
19
+ Running clean epoch 2/10
20
+ Train accuracy: 88.42%
21
+ Eval accuracy: 87.05%
22
+ Best score found. Saved model to ./outputs/2024-03-04-17-14-45-472632/best_model/
23
+ ==========================================================
24
+ Epoch 3
25
+ Running clean epoch 3/10
26
+ Train accuracy: 92.21%
27
+ Eval accuracy: 87.67%
28
+ Best score found. Saved model to ./outputs/2024-03-04-17-14-45-472632/best_model/
29
+ ==========================================================
30
+ Epoch 4
31
+ Running clean epoch 4/10
32
+ Train accuracy: 94.91%
33
+ Eval accuracy: 87.34%
34
+ ==========================================================
35
+ Epoch 5
36
+ Running clean epoch 5/10
37
+ Train accuracy: 97.15%
38
+ Eval accuracy: 87.03%
39
+ ==========================================================
40
+ Epoch 6
41
+ Running clean epoch 6/10
42
+ Train accuracy: 98.45%
43
+ Eval accuracy: 86.12%
44
+ ==========================================================
45
+ Epoch 7
46
+ Running clean epoch 7/10
47
+ Train accuracy: 99.25%
48
+ Eval accuracy: 85.90%
49
+ ==========================================================
50
+ Epoch 8
51
+ Running clean epoch 8/10
52
+ Train accuracy: 99.60%
53
+ Eval accuracy: 85.51%
54
+ ==========================================================
55
+ Epoch 9
56
+ Running clean epoch 9/10
57
+ Train accuracy: 99.82%
58
+ Eval accuracy: 85.36%
59
+ ==========================================================
60
+ Epoch 10
61
+ Running clean epoch 10/10
62
+ Train accuracy: 99.91%
63
+ Eval accuracy: 84.99%
64
+ Wrote README to ./outputs/2024-03-04-17-14-45-472632/README.md.
lstm-chinanews-chinese/training_args.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"num_epochs": 10, "num_clean_epochs": 1, "attack_epoch_interval": 1, "early_stopping_epochs": null, "learning_rate": 0.0002, "num_warmup_steps": 500, "weight_decay": 0.01, "per_device_train_batch_size": 16, "per_device_eval_batch_size": 32, "gradient_accumulation_steps": 1, "random_seed": 718, "parallel": false, "load_best_model_at_end": false, "alpha": 1.0, "num_train_adv_examples": -1, "query_budget_train": null, "attack_num_workers_per_device": 1, "output_dir": "./outputs/2024-03-04-17-14-45-472632", "checkpoint_interval_steps": null, "checkpoint_interval_epochs": null, "save_last": true, "log_to_tb": false, "tb_log_dir": null, "log_to_wandb": false, "wandb_project": "textattack", "logging_interval_step": 1}
lstm-chnsenticorp-chinese/README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ## TextAttack Model Card
2
+
3
+ This model was fine-tuned using TextAttack. The model was fine-tuned
4
+ for 10 epochs with a batch size of 16,
5
+ and an initial learning rate of 0.0002.
6
+ Since this was a classification task, the model was trained with a cross-entropy loss function.
7
+ The best score the model achieved on this task was 0.8983333333333333, as measured by the
8
+ eval set accuracy, found after 7 epochs.
9
+
10
+ For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
lstm-chnsenticorp-chinese/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"architectures": "LSTMForClassification", "hidden_size": 150, "depth": 1, "dropout": 0.3, "num_labels": 2, "max_seq_length": 128, "model_path": null, "emb_layer_trainable": true}
lstm-chnsenticorp-chinese/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9db315e2c8c53b0a5f53bad2628d634641507b2fa2ece02942c1f5baa2ce36dc
3
+ size 764067663
lstm-chnsenticorp-chinese/train_log.txt ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Writing logs to ./outputs/2024-03-02-22-34-05-343811/train_log.txt.
2
+ Wrote original training args to ./outputs/2024-03-02-22-34-05-343811/training_args.json.
3
+ ***** Running training *****
4
+ Num examples = 9600
5
+ Num epochs = 10
6
+ Num clean epochs = 10
7
+ Instantaneous batch size per device = 16
8
+ Total train batch size (w. parallel, distributed & accumulation) = 16
9
+ Gradient accumulation steps = 1
10
+ Total optimization steps = 6000
11
+ ==========================================================
12
+ Epoch 1
13
+ Running clean epoch 1/10
14
+ Train accuracy: 69.30%
15
+ Eval accuracy: 75.33%
16
+ Best score found. Saved model to ./outputs/2024-03-02-22-34-05-343811/best_model/
17
+ ==========================================================
18
+ Epoch 2
19
+ Running clean epoch 2/10
20
+ Train accuracy: 84.70%
21
+ Eval accuracy: 85.50%
22
+ Best score found. Saved model to ./outputs/2024-03-02-22-34-05-343811/best_model/
23
+ ==========================================================
24
+ Epoch 3
25
+ Running clean epoch 3/10
26
+ Train accuracy: 90.29%
27
+ Eval accuracy: 87.92%
28
+ Best score found. Saved model to ./outputs/2024-03-02-22-34-05-343811/best_model/
29
+ ==========================================================
30
+ Epoch 4
31
+ Running clean epoch 4/10
32
+ Train accuracy: 93.79%
33
+ Eval accuracy: 89.00%
34
+ Best score found. Saved model to ./outputs/2024-03-02-22-34-05-343811/best_model/
35
+ ==========================================================
36
+ Epoch 5
37
+ Running clean epoch 5/10
38
+ Train accuracy: 96.18%
39
+ Eval accuracy: 88.67%
40
+ ==========================================================
41
+ Epoch 6
42
+ Running clean epoch 6/10
43
+ Train accuracy: 97.52%
44
+ Eval accuracy: 89.50%
45
+ Best score found. Saved model to ./outputs/2024-03-02-22-34-05-343811/best_model/
46
+ ==========================================================
47
+ Epoch 7
48
+ Running clean epoch 7/10
49
+ Train accuracy: 98.43%
50
+ Eval accuracy: 89.83%
51
+ Best score found. Saved model to ./outputs/2024-03-02-22-34-05-343811/best_model/
52
+ ==========================================================
53
+ Epoch 8
54
+ Running clean epoch 8/10
55
+ Train accuracy: 98.95%
56
+ Eval accuracy: 88.92%
57
+ ==========================================================
58
+ Epoch 9
59
+ Running clean epoch 9/10
60
+ Train accuracy: 99.25%
61
+ Eval accuracy: 89.17%
62
+ ==========================================================
63
+ Epoch 10
64
+ Running clean epoch 10/10
65
+ Train accuracy: 99.39%
66
+ Eval accuracy: 88.42%
67
+ Wrote README to ./outputs/2024-03-02-22-34-05-343811/README.md.
lstm-chnsenticorp-chinese/training_args.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"num_epochs": 10, "num_clean_epochs": 1, "attack_epoch_interval": 1, "early_stopping_epochs": null, "learning_rate": 0.0002, "num_warmup_steps": 500, "weight_decay": 0.01, "per_device_train_batch_size": 16, "per_device_eval_batch_size": 32, "gradient_accumulation_steps": 1, "random_seed": 718, "parallel": false, "load_best_model_at_end": false, "alpha": 1.0, "num_train_adv_examples": -1, "query_budget_train": null, "attack_num_workers_per_device": 1, "output_dir": "./outputs/2024-03-02-22-34-05-343811", "checkpoint_interval_steps": null, "checkpoint_interval_epochs": null, "save_last": true, "log_to_tb": false, "tb_log_dir": null, "log_to_wandb": false, "wandb_project": "textattack", "logging_interval_step": 1}