root@autodl-container-32ce119752-f4e7b2aa commited on
Commit
db7f787
1 Parent(s): 2763742

model submit

Browse files
README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ## TextAttack Model Card
2
+
3
+ This `albert` model was fine-tuned using TextAttack. The model was fine-tuned
4
+ for 3 epochs with a batch size of 8,
5
+ a maximum sequence length of 512, and an initial learning rate of 3e-05.
6
+ Since this was a classification task, the model was trained with a cross-entropy loss function.
7
+ The best score the model achieved on this task was 0.9503333333333334, as measured by the
8
+ eval set accuracy, found after 3 epochs.
9
+
10
+ For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/autodl-tmp/albert-base-chinese-cluecorpussmall",
3
+ "architectures": [
4
+ "AlbertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0,
7
+ "bos_token_id": 2,
8
+ "classifier_dropout_prob": 0.1,
9
+ "embedding_size": 128,
10
+ "eos_token_id": 3,
11
+ "hidden_act": "relu",
12
+ "hidden_dropout_prob": 0,
13
+ "hidden_size": 768,
14
+ "id2label": {
15
+ "0": "negative",
16
+ "1": "positive"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "inner_group_num": 1,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "negative": 0,
23
+ "positive": 1
24
+ },
25
+ "layer_norm_eps": 1e-12,
26
+ "max_position_embeddings": 512,
27
+ "model_type": "albert",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_groups": 1,
30
+ "num_hidden_layers": 12,
31
+ "pad_token_id": 0,
32
+ "position_embedding_type": "absolute",
33
+ "tokenizer_class": "BertTokenizer",
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.38.1",
36
+ "type_vocab_size": 2,
37
+ "vocab_size": 21128
38
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b2868f9802e5c7b7b84fde5334b606ac8c179ad3b816d97442a996dcea47f8f
3
+ size 42201448
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
train_log.txt ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Writing logs to ./outputs/2024-04-30-11-13-46-191908/train_log.txt.
2
+ Wrote original training args to ./outputs/2024-04-30-11-13-46-191908/training_args.json.
3
+ ***** Running training *****
4
+ Num examples = 4800
5
+ Num epochs = 3
6
+ Num clean epochs = 3
7
+ Instantaneous batch size per device = 8
8
+ Total train batch size (w. parallel, distributed & accumulation) = 8
9
+ Gradient accumulation steps = 1
10
+ Total optimization steps = 1800
11
+ ==========================================================
12
+ Epoch 1
13
+ Running clean epoch 1/3
14
+ Train accuracy: 88.23%
15
+ Eval accuracy: 94.63%
16
+ Best score found. Saved model to ./outputs/2024-04-30-11-13-46-191908/best_model/
17
+ ==========================================================
18
+ Epoch 2
19
+ Running clean epoch 2/3
20
+ Train accuracy: 96.08%
21
+ Eval accuracy: 94.67%
22
+ Best score found. Saved model to ./outputs/2024-04-30-11-13-46-191908/best_model/
23
+ ==========================================================
24
+ Epoch 3
25
+ Running clean epoch 3/3
26
+ Train accuracy: 98.31%
27
+ Eval accuracy: 95.03%
28
+ Best score found. Saved model to ./outputs/2024-04-30-11-13-46-191908/best_model/
29
+ Wrote README to ./outputs/2024-04-30-11-13-46-191908/README.md.
training_args.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"num_epochs": 3, "num_clean_epochs": 1, "attack_epoch_interval": 1, "early_stopping_epochs": null, "learning_rate": 3e-05, "num_warmup_steps": 500, "weight_decay": 0.01, "per_device_train_batch_size": 8, "per_device_eval_batch_size": 32, "gradient_accumulation_steps": 1, "random_seed": 718, "parallel": false, "load_best_model_at_end": false, "alpha": 1.0, "num_train_adv_examples": -1, "query_budget_train": null, "attack_num_workers_per_device": 1, "output_dir": "./outputs/2024-04-30-11-13-46-191908", "checkpoint_interval_steps": null, "checkpoint_interval_epochs": null, "save_last": true, "log_to_tb": false, "tb_log_dir": null, "log_to_wandb": false, "wandb_project": "textattack", "logging_interval_step": 1}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff