VuongQuoc commited on
Commit
0b0bab7
1 Parent(s): 33b4cec

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -13
README.md CHANGED
@@ -13,7 +13,7 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  This model is a fine-tuned version of [VuongQuoc/my_awesome_swag_model](https://huggingface.co/VuongQuoc/my_awesome_swag_model) on an unknown dataset.
15
  It achieves the following results on the evaluation set:
16
- - Loss: 1.5594
17
 
18
  ## Model description
19
 
@@ -32,26 +32,34 @@ More information needed
32
  ### Training hyperparameters
33
 
34
  The following hyperparameters were used during training:
35
- - learning_rate: 1e-06
36
  - train_batch_size: 2
37
  - eval_batch_size: 4
38
  - seed: 42
39
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
  - lr_scheduler_type: linear
41
- - lr_scheduler_warmup_ratio: 0.8
42
- - num_epochs: 1
43
 
44
  ### Training results
45
 
46
- | Training Loss | Epoch | Step | Validation Loss |
47
- |:-------------:|:-----:|:----:|:---------------:|
48
- | 0.7547 | 0.13 | 700 | 1.2948 |
49
- | 0.5101 | 0.26 | 1400 | 1.4142 |
50
- | 0.3566 | 0.38 | 2100 | 1.5164 |
51
- | 0.2476 | 0.51 | 2800 | 1.5077 |
52
- | 0.156 | 0.64 | 3500 | 1.4539 |
53
- | 0.1178 | 0.77 | 4200 | 1.6601 |
54
- | 0.1148 | 0.89 | 4900 | 1.5594 |
 
 
 
 
 
 
 
 
55
 
56
 
57
  ### Framework versions
 
13
 
14
  This model is a fine-tuned version of [VuongQuoc/my_awesome_swag_model](https://huggingface.co/VuongQuoc/my_awesome_swag_model) on an unknown dataset.
15
  It achieves the following results on the evaluation set:
16
+ - Loss: 1.6094
17
 
18
  ## Model description
19
 
 
32
  ### Training hyperparameters
33
 
34
  The following hyperparameters were used during training:
35
+ - learning_rate: 3e-05
36
  - train_batch_size: 2
37
  - eval_batch_size: 4
38
  - seed: 42
39
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
  - lr_scheduler_type: linear
41
+ - lr_scheduler_warmup_ratio: 0.6
42
+ - num_epochs: 2
43
 
44
  ### Training results
45
 
46
+ | Training Loss | Epoch | Step | Validation Loss |
47
+ |:-------------:|:-----:|:-----:|:---------------:|
48
+ | 0.8462 | 0.13 | 700 | 1.7281 |
49
+ | 0.4775 | 0.26 | 1400 | 1.6819 |
50
+ | 0.3949 | 0.38 | 2100 | 1.8476 |
51
+ | 0.3923 | 0.51 | 2800 | 2.2831 |
52
+ | 1.1178 | 0.64 | 3500 | 1.6094 |
53
+ | 1.6198 | 0.77 | 4200 | 1.6094 |
54
+ | 1.6156 | 0.89 | 4900 | 1.6094 |
55
+ | 1.6151 | 1.02 | 5600 | 1.6094 |
56
+ | 1.615 | 1.15 | 6300 | 1.6094 |
57
+ | 1.6113 | 1.28 | 7000 | 1.6094 |
58
+ | 1.6133 | 1.41 | 7700 | 1.6094 |
59
+ | 1.6114 | 1.53 | 8400 | 1.6094 |
60
+ | 1.6108 | 1.66 | 9100 | 1.6094 |
61
+ | 1.6155 | 1.79 | 9800 | 1.6094 |
62
+ | 1.6087 | 1.92 | 10500 | 1.6094 |
63
 
64
 
65
  ### Framework versions