update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: DNADebertaSentencepiece30k_continuation_continuation_continuation
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# DNADebertaSentencepiece30k_continuation_continuation_continuation
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Vlasta/DNADebertaSentencepiece30k_continuation_continuation](https://huggingface.co/Vlasta/DNADebertaSentencepiece30k_continuation_continuation) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 5.9319
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 5e-05
|
36 |
+
- train_batch_size: 16
|
37 |
+
- eval_batch_size: 16
|
38 |
+
- seed: 42
|
39 |
+
- gradient_accumulation_steps: 4
|
40 |
+
- total_train_batch_size: 64
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- num_epochs: 15
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:------:|:---------------:|
|
50 |
+
| 6.0844 | 0.41 | 5000 | 6.0623 |
|
51 |
+
| 6.0962 | 0.81 | 10000 | 6.0659 |
|
52 |
+
| 6.0903 | 1.22 | 15000 | 6.0566 |
|
53 |
+
| 6.0874 | 1.62 | 20000 | 6.0550 |
|
54 |
+
| 6.082 | 2.03 | 25000 | 6.0485 |
|
55 |
+
| 6.0756 | 2.44 | 30000 | 6.0446 |
|
56 |
+
| 6.0722 | 2.84 | 35000 | 6.0429 |
|
57 |
+
| 6.0698 | 3.25 | 40000 | 6.0317 |
|
58 |
+
| 6.0627 | 3.66 | 45000 | 6.0297 |
|
59 |
+
| 6.0606 | 4.06 | 50000 | 6.0301 |
|
60 |
+
| 6.0521 | 4.47 | 55000 | 6.0224 |
|
61 |
+
| 6.0526 | 4.87 | 60000 | 6.0159 |
|
62 |
+
| 6.0473 | 5.28 | 65000 | 6.0140 |
|
63 |
+
| 6.0435 | 5.69 | 70000 | 6.0076 |
|
64 |
+
| 6.039 | 6.09 | 75000 | 6.0022 |
|
65 |
+
| 6.032 | 6.5 | 80000 | 6.0037 |
|
66 |
+
| 6.0319 | 6.91 | 85000 | 5.9979 |
|
67 |
+
| 6.0232 | 7.31 | 90000 | 5.9937 |
|
68 |
+
| 6.0279 | 7.72 | 95000 | 5.9844 |
|
69 |
+
| 6.0198 | 8.12 | 100000 | 5.9854 |
|
70 |
+
| 6.0165 | 8.53 | 105000 | 5.9796 |
|
71 |
+
| 6.0153 | 8.94 | 110000 | 5.9741 |
|
72 |
+
| 6.0111 | 9.34 | 115000 | 5.9722 |
|
73 |
+
| 6.0082 | 9.75 | 120000 | 5.9679 |
|
74 |
+
| 6.0035 | 10.16 | 125000 | 5.9654 |
|
75 |
+
| 5.999 | 10.56 | 130000 | 5.9624 |
|
76 |
+
| 5.998 | 10.97 | 135000 | 5.9572 |
|
77 |
+
| 5.9926 | 11.37 | 140000 | 5.9535 |
|
78 |
+
| 5.9927 | 11.78 | 145000 | 5.9533 |
|
79 |
+
| 5.9903 | 12.19 | 150000 | 5.9517 |
|
80 |
+
| 5.986 | 12.59 | 155000 | 5.9459 |
|
81 |
+
| 5.9816 | 13.0 | 160000 | 5.9439 |
|
82 |
+
| 5.9786 | 13.41 | 165000 | 5.9390 |
|
83 |
+
| 5.9781 | 13.81 | 170000 | 5.9357 |
|
84 |
+
| 5.9779 | 14.22 | 175000 | 5.9346 |
|
85 |
+
| 5.9756 | 14.62 | 180000 | 5.9339 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.19.2
|
91 |
+
- Pytorch 1.11.0
|
92 |
+
- Datasets 2.2.2
|
93 |
+
- Tokenizers 0.12.1
|