|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for OpenAI GPT.""" |
|
|
|
|
|
import json |
|
from typing import TYPE_CHECKING, List, Optional, Tuple |
|
|
|
from tokenizers import pre_tokenizers |
|
|
|
from ...tokenization_utils_base import BatchEncoding |
|
from ...tokenization_utils_fast import PreTrainedTokenizerFast |
|
from ...utils import logging |
|
from .tokenization_gpt2 import GPT2Tokenizer |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers.pipelines.conversational import Conversation |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", |
|
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", |
|
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", |
|
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", |
|
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", |
|
}, |
|
"merges_file": { |
|
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", |
|
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", |
|
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", |
|
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", |
|
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", |
|
}, |
|
"tokenizer_file": { |
|
"gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", |
|
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", |
|
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", |
|
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", |
|
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", |
|
}, |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"gpt2": 1024, |
|
"gpt2-medium": 1024, |
|
"gpt2-large": 1024, |
|
"gpt2-xl": 1024, |
|
"distilgpt2": 1024, |
|
} |
|
|
|
|
|
class GPT2TokenizerFast(PreTrainedTokenizerFast): |
|
""" |
|
Construct a "fast" GPT-2 tokenizer (backed by HuggingFace's `tokenizers` library). Based on byte-level |
|
Byte-Pair-Encoding. |
|
|
|
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will |
|
be encoded differently whether it is at the beginning of the sentence (without space) or not: |
|
|
|
:: |
|
|
|
>>> from transformers import GPT2TokenizerFast |
|
>>> tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") |
|
>>> tokenizer("Hello world")['input_ids'] |
|
[15496, 995] |
|
>>> tokenizer(" Hello world")['input_ids'] |
|
[18435, 995] |
|
|
|
You can get around that behavior by passing ``add_prefix_space=True`` when instantiating this tokenizer or when you |
|
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. |
|
|
|
.. note:: |
|
|
|
When used with ``is_split_into_words=True``, this tokenizer needs to be instantiated with |
|
``add_prefix_space=True``. |
|
|
|
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main |
|
methods. Users should refer to this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (:obj:`str`): |
|
Path to the vocabulary file. |
|
merges_file (:obj:`str`): |
|
Path to the merges file. |
|
errors (:obj:`str`, `optional`, defaults to :obj:`"replace"`): |
|
Paradigm to follow when decoding bytes to UTF-8. See `bytes.decode |
|
<https://docs.python.org/3/library/stdtypes.html#bytes.decode>`__ for more information. |
|
unk_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
bos_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`): |
|
The beginning of sequence token. |
|
eos_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`): |
|
The end of sequence token. |
|
add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any |
|
other word. (GPT2 tokenizer detect beginning of words by the preceding space). |
|
trim_offsets (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not the post-processing step should trim offsets to avoid including whitespaces. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
slow_tokenizer_class = GPT2Tokenizer |
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
merges_file=None, |
|
tokenizer_file=None, |
|
unk_token="<|endoftext|>", |
|
bos_token="<|endoftext|>", |
|
eos_token="<|endoftext|>", |
|
add_prefix_space=False, |
|
**kwargs |
|
): |
|
super().__init__( |
|
vocab_file, |
|
merges_file, |
|
tokenizer_file=tokenizer_file, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
add_prefix_space=add_prefix_space, |
|
**kwargs, |
|
) |
|
|
|
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) |
|
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: |
|
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) |
|
pre_tok_state["add_prefix_space"] = add_prefix_space |
|
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) |
|
|
|
self.add_prefix_space = add_prefix_space |
|
|
|
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: |
|
is_split_into_words = kwargs.get("is_split_into_words", False) |
|
assert self.add_prefix_space or not is_split_into_words, ( |
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " |
|
"to use it with pretokenized inputs." |
|
) |
|
|
|
return super()._batch_encode_plus(*args, **kwargs) |
|
|
|
def _encode_plus(self, *args, **kwargs) -> BatchEncoding: |
|
is_split_into_words = kwargs.get("is_split_into_words", False) |
|
|
|
assert self.add_prefix_space or not is_split_into_words, ( |
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " |
|
"to use it with pretokenized inputs." |
|
) |
|
|
|
return super()._encode_plus(*args, **kwargs) |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
files = self._tokenizer.model.save(save_directory, name=filename_prefix) |
|
return tuple(files) |
|
|
|
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]: |
|
"""This corresponds to DialoGPT variants of models.""" |
|
input_ids = [] |
|
for is_user, text in conversation.iter_texts(): |
|
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id]) |
|
|
|
if len(input_ids) > self.model_max_length: |
|
input_ids = input_ids[-self.model_max_length :] |
|
return input_ids |
|
|