Vivek's picture
add weights and tokenizers
282c159
raw
history blame
3.53 kB
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...file_utils import (
_BaseLazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config"],
"tokenization_gpt2": ["GPT2Tokenizer"],
}
if is_tokenizers_available():
_import_structure["tokenization_gpt2_fast"] = ["GPT2TokenizerFast"]
if is_torch_available():
_import_structure["modeling_gpt2"] = [
"GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPT2DoubleHeadsModel",
"GPT2ForSequenceClassification",
"GPT2LMHeadModel",
"GPT2Model",
"GPT2PreTrainedModel",
"load_tf_weights_in_gpt2",
]
if is_tf_available():
_import_structure["modeling_tf_gpt2"] = [
"TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGPT2DoubleHeadsModel",
"TFGPT2ForSequenceClassification",
"TFGPT2LMHeadModel",
"TFGPT2MainLayer",
"TFGPT2Model",
"TFGPT2PreTrainedModel",
]
if is_flax_available():
_import_structure["modeling_flax_gpt2"] = ["FlaxGPT2LMHeadModel", "FlaxGPT2Model", "FlaxGPT2PreTrainedModel"]
if TYPE_CHECKING:
from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config
from .tokenization_gpt2 import GPT2Tokenizer
if is_tokenizers_available():
from .tokenization_gpt2_fast import GPT2TokenizerFast
if is_torch_available():
from .modeling_gpt2 import (
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
GPT2DoubleHeadsModel,
GPT2ForSequenceClassification,
GPT2LMHeadModel,
GPT2Model,
GPT2PreTrainedModel,
load_tf_weights_in_gpt2,
)
if is_tf_available():
from .modeling_tf_gpt2 import (
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGPT2DoubleHeadsModel,
TFGPT2ForSequenceClassification,
TFGPT2LMHeadModel,
TFGPT2MainLayer,
TFGPT2Model,
TFGPT2PreTrainedModel,
)
if is_flax_available():
from .modeling_flax_gpt2 import FlaxGPT2LMHeadModel, FlaxGPT2Model, FlaxGPT2PreTrainedModel
else:
import importlib
import os
import sys
class _LazyModule(_BaseLazyModule):
"""
Module class that surfaces all objects but only performs associated imports when the objects are requested.
"""
__file__ = globals()["__file__"]
__path__ = [os.path.dirname(__file__)]
def _get_module(self, module_name: str):
return importlib.import_module("." + module_name, self.__name__)
sys.modules[__name__] = _LazyModule(__name__, _import_structure)