VitaliiVrublevskyi commited on
Commit
76ce245
1 Parent(s): 6d9068a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -13
README.md CHANGED
@@ -1,20 +1,102 @@
1
  ---
2
- library_name: peft
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ## Training procedure
5
 
 
6
 
7
- The following `bitsandbytes` quantization config was used during training:
8
- - load_in_8bit: True
9
- - load_in_4bit: False
10
- - llm_int8_threshold: 6.0
11
- - llm_int8_skip_modules: None
12
- - llm_int8_enable_fp32_cpu_offload: False
13
- - llm_int8_has_fp16_weight: False
14
- - bnb_4bit_quant_type: fp4
15
- - bnb_4bit_use_double_quant: False
16
- - bnb_4bit_compute_dtype: float32
17
- ### Framework versions
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- - PEFT 0.4.0
 
 
 
 
1
  ---
2
+ base_model: meta-llama/Llama-2-7b-hf
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - glue
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: Llama-2-7b-hf-finetuned-mrpc-v3
12
+ results: []
13
  ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # Llama-2-7b-hf-finetuned-mrpc-v3
19
+
20
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the glue dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.6823
23
+ - Accuracy: 0.7475
24
+ - F1: 0.8245
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
  ## Training procedure
39
 
40
+ ### Training hyperparameters
41
 
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 0.0001
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 16
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 40
50
+
51
+ ### Training results
 
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
55
+ | No log | 1.0 | 230 | 0.6528 | 0.625 | 0.6982 |
56
+ | No log | 2.0 | 460 | 0.6217 | 0.6936 | 0.8159 |
57
+ | 0.6443 | 3.0 | 690 | 0.6033 | 0.6985 | 0.7993 |
58
+ | 0.6443 | 4.0 | 920 | 0.6240 | 0.6838 | 0.8089 |
59
+ | 0.6173 | 5.0 | 1150 | 0.5451 | 0.7255 | 0.8170 |
60
+ | 0.6173 | 6.0 | 1380 | 0.5380 | 0.7451 | 0.8188 |
61
+ | 0.5776 | 7.0 | 1610 | 0.5376 | 0.7426 | 0.8346 |
62
+ | 0.5776 | 8.0 | 1840 | 0.5518 | 0.7230 | 0.8243 |
63
+ | 0.5353 | 9.0 | 2070 | 0.5270 | 0.7475 | 0.8325 |
64
+ | 0.5353 | 10.0 | 2300 | 0.5381 | 0.7377 | 0.8086 |
65
+ | 0.5071 | 11.0 | 2530 | 0.5453 | 0.7181 | 0.7842 |
66
+ | 0.5071 | 12.0 | 2760 | 0.5335 | 0.7475 | 0.8341 |
67
+ | 0.5071 | 13.0 | 2990 | 0.5617 | 0.7083 | 0.7733 |
68
+ | 0.492 | 14.0 | 3220 | 0.5343 | 0.7426 | 0.8115 |
69
+ | 0.492 | 15.0 | 3450 | 0.5133 | 0.7696 | 0.8423 |
70
+ | 0.4608 | 16.0 | 3680 | 0.5573 | 0.7549 | 0.8366 |
71
+ | 0.4608 | 17.0 | 3910 | 0.5282 | 0.7721 | 0.8447 |
72
+ | 0.4283 | 18.0 | 4140 | 0.5894 | 0.7132 | 0.7710 |
73
+ | 0.4283 | 19.0 | 4370 | 0.5875 | 0.7328 | 0.8239 |
74
+ | 0.4042 | 20.0 | 4600 | 0.5447 | 0.7647 | 0.8339 |
75
+ | 0.4042 | 21.0 | 4830 | 0.5712 | 0.7598 | 0.8399 |
76
+ | 0.3904 | 22.0 | 5060 | 0.5563 | 0.7623 | 0.8301 |
77
+ | 0.3904 | 23.0 | 5290 | 0.5718 | 0.7623 | 0.8364 |
78
+ | 0.3597 | 24.0 | 5520 | 0.5592 | 0.7525 | 0.8250 |
79
+ | 0.3597 | 25.0 | 5750 | 0.5941 | 0.7574 | 0.8364 |
80
+ | 0.3597 | 26.0 | 5980 | 0.5811 | 0.7623 | 0.8370 |
81
+ | 0.3445 | 27.0 | 6210 | 0.6083 | 0.7549 | 0.8339 |
82
+ | 0.3445 | 28.0 | 6440 | 0.6049 | 0.75 | 0.8265 |
83
+ | 0.3197 | 29.0 | 6670 | 0.6042 | 0.7549 | 0.8311 |
84
+ | 0.3197 | 30.0 | 6900 | 0.6260 | 0.7377 | 0.8099 |
85
+ | 0.3 | 31.0 | 7130 | 0.6438 | 0.75 | 0.8229 |
86
+ | 0.3 | 32.0 | 7360 | 0.6319 | 0.7402 | 0.8233 |
87
+ | 0.2873 | 33.0 | 7590 | 0.6502 | 0.7402 | 0.8191 |
88
+ | 0.2873 | 34.0 | 7820 | 0.6591 | 0.7426 | 0.8187 |
89
+ | 0.2719 | 35.0 | 8050 | 0.6474 | 0.7451 | 0.8219 |
90
+ | 0.2719 | 36.0 | 8280 | 0.6803 | 0.7598 | 0.8367 |
91
+ | 0.2583 | 37.0 | 8510 | 0.6903 | 0.7475 | 0.8221 |
92
+ | 0.2583 | 38.0 | 8740 | 0.6965 | 0.7525 | 0.8279 |
93
+ | 0.2583 | 39.0 | 8970 | 0.6850 | 0.75 | 0.8235 |
94
+ | 0.2423 | 40.0 | 9200 | 0.6823 | 0.7475 | 0.8245 |
95
+
96
+
97
+ ### Framework versions
98
 
99
+ - Transformers 4.31.0
100
+ - Pytorch 2.0.1+cu118
101
+ - Datasets 2.14.5
102
+ - Tokenizers 0.13.3