Viswes commited on
Commit
34961eb
·
1 Parent(s): 844adc5

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1351.52 +/- 140.57
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e54dfbd002a303b4b14244b7af81d6c83edd85c18f58bb3c84c797a26695c06
3
+ size 129263
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f50806af0d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f50806af160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f50806af1f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f50806af280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f50806af310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f50806af3a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f50806af430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f50806af4c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f50806af550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f50806af5e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f50806af670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f50806af700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f50806ae880>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680800955553899145,
68
+ "learning_rate": 0.0009,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/TX2/SH/LkoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAL+Rz73JazE/qmv6Pi1YMj7kIMq/sbgwvpDnor+wpRw/+/F9PweSCb+V0YS/DgnovbQpYz/F55+/N+ZWPlVue7/qcQQ/MaWXvy9plL8MhXa+7F1MvldRJL8Qe4a/2rWNPAl0Sj+6ecU++ZX3PnDUkL8lkTQ/hk2av8bw076fmBk/wNzMvoV0FD4zQbk+7mKuvb3Igj/vVuW8eX7iPzmiRj67Eam/jWEavvwgL79tE3m/Bv7xPu67fL/krxg9u4hpvDVUHT83M2w/WWuGvyVo1jwJdEo/unnFPvmV9z5w1JC/PwMbPnztm7+ZVt2+JR0YP0Mfqr/l882+g7n0PnnIwr5dS4M/VVtUveoLcT95S+I80jCzvsEIlr+tK7W8DewewLyULT4kvLm+jUAZP5pdjT0KXyw/WI08v8Ko8r6941g/CXRKP7p5xT75lfc+cNSQv5jAz776alC/zw1HPSQBZT6yTzY/upZ5wKMNIT7bKAO/4dpWPdvgnT9dytw97fxCPuI/ez/12dE/FjEoPypTvD+ycxW9xqMaQBxSWD81gxhAkdBLvp7hEsD7Q1k+jcGkP8raob+6ecU+nVkEwHDUkL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADraa+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWRDSPQAAAAA4d+W/AAAAAJMZjLwAAAAAZ7bvPwAAAAAQfBs9AAAAAIFb8D8AAAAAK/QOPgAAAABYkeO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWpHmtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHH4BT4AAAAA++PqvwAAAADVR0Q9AAAAADI5+z8AAAAAaHPpvQAAAABYEv4/AAAAAK1PxD0AAAAA0ZUAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhJyrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDVN7c9AAAAAOzm+L8AAAAAKI6xvQAAAABhnuQ/AAAAAI01rb0AAAAAlmnoPwAAAABqsRY7AAAAAB5n7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIZ2i2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZ5AQvgAAAACQ99+/AAAAAMXs3r0AAAAADw32PwAAAAAkwWy9AAAAADR79z8AAAAAcF4DPgAAAABe1O2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJKFc6q814yMAWyUTegDjAF0lEdAqgO8GRmseXV9lChoBkdAinhLL6k692gHTegDaAhHQKoH5WMju8d1fZQoaAZHQJDLpt8/lhhoB03oA2gIR0CqCgIiTt9hdX2UKGgGR0CQBbd6sySFaAdN6ANoCEdAqgpjIHTqjnV9lChoBkdAken2Y0EX+GgHTegDaAhHQKoQBYwIt191fZQoaAZHQHn6FTWGyopoB03oA2gIR0CqFJqzJIUbdX2UKGgGR0CLnblXiiqRaAdN6ANoCEdAqhfJfF72MHV9lChoBkdAeXfwZwXIl2gHTegDaAhHQKoYYmw7kn11fZQoaAZHQJKPZ8iOeatoB03oA2gIR0CqH1SMcZLqdX2UKGgGR0CStgarWAf/aAdN6ANoCEdAqiN62KEWZnV9lChoBkdAkNQreyiVSmgHTegDaAhHQKolgIfKZD11fZQoaAZHQJMocyDZlFtoB03oA2gIR0CqJdeVkc0cdX2UKGgGR0CSKAir1dxAaAdN6ANoCEdAqist6Vt4zXV9lChoBkdAkXByWZ7Xx2gHTegDaAhHQKovRfYzzmR1fZQoaAZHQJMkPxFy7wtoB03oA2gIR0CqMb/2TPjXdX2UKGgGR0CT4QxwhnrZaAdN6ANoCEdAqjJGbExZdXV9lChoBkdAkpeLfxc3VGgHTegDaAhHQKo6WghbGFV1fZQoaAZHQJORfK8tf5VoB03oA2gIR0CqPqZZ8rqddX2UKGgGR0CRRt9srNGFaAdN6ANoCEdAqkCwnF5v+HV9lChoBkdAkpgx7iQ1aWgHTegDaAhHQKpBCdwvQF91fZQoaAZHQJWgg4Ia99NoB03oA2gIR0CqRk4Ny5qedX2UKGgGR0CPStEqlP8AaAdN6ANoCEdAqkp5UedTYXV9lChoBkdAk0Xy0v4/NmgHTegDaAhHQKpMd5fMOgB1fZQoaAZHQJN5vg5zYEpoB03oA2gIR0CqTNDRc/t6dX2UKGgGR0CTR+yEL6UJaAdN6ANoCEdAqlUGeYlY2nV9lChoBkdAk62m07bL2mgHTegDaAhHQKpZ9eVLSNR1fZQoaAZHQJRi9W+49X9oB03oA2gIR0CqXBgg5imVdX2UKGgGR0CW4e7LdN34aAdN6ANoCEdAqlx7TfBN23V9lChoBkdAljjRgRbr1WgHTegDaAhHQKphxa6BiCt1fZQoaAZHQJMJ6Cz1K5FoB03oA2gIR0CqZdzgMtsfdX2UKGgGR0CWs5WluWKNaAdN6ANoCEdAqmfrrqt5lnV9lChoBkdAlzB5A6dUbWgHTegDaAhHQKpoSj3VTaV1fZQoaAZHQJYVHu5SWJJoB03oA2gIR0CqbyciwB5pdX2UKGgGR0CS8HJ0nw5OaAdN6ANoCEdAqnU752yLRHV9lChoBkdAlRilBdD6WWgHTegDaAhHQKp3QBYmsvJ1fZQoaAZHQJWrgoKD019oB03oA2gIR0Cqd5y13MY/dX2UKGgGR0CVFZIqbz9TaAdN6ANoCEdAqny2M0gr6XV9lChoBkdAko279uP3jGgHTegDaAhHQKqA+msvIwN1fZQoaAZHQJWPguJ1q35oB03oA2gIR0Cqgw+9rXUZdX2UKGgGR0CXAJ+so2GZaAdN6ANoCEdAqoN8zdk8R3V9lChoBkdAltMW4qgAZWgHTegDaAhHQKqJcABDG991fZQoaAZHQJdtFByCFsZoB03oA2gIR0CqkEnezlcRdX2UKGgGR0CVBdhC+lCUaAdN6ANoCEdAqpK6UVzp5nV9lChoBkdAksjazVtoBmgHTegDaAhHQKqTEoNutOp1fZQoaAZHQJPmoA4n4PBoB03oA2gIR0CqmF3YDklvdX2UKGgGR0CXaJ0l7dBTaAdN6ANoCEdAqpxzxy4nW3V9lChoBkdAk9VcYl6Z6WgHTegDaAhHQKqeaVdonKJ1fZQoaAZHQI1RU0gr6LxoB03oA2gIR0CqnsDVYp2EdX2UKGgGR0CWlQNHYpUhaAdN6ANoCEdAqqPOJ1q33HV9lChoBkdAmJWFfJFLFmgHTegDaAhHQKqpgis4ku91fZQoaAZHQJYvvncL0BhoB03oA2gIR0CqrNLofSx8dX2UKGgGR0CVa2rIo3JgaAdN6ANoCEdAqq1pFEy+H3V9lChoBkdAjeLs3qAz6GgHTegDaAhHQKqy949HMEB1fZQoaAZHQH9asj3VTaVoB03oA2gIR0Cqt0S1uzhQdX2UKGgGR0CSC4mgam4zaAdN6ANoCEdAqrk4uK4x13V9lChoBkdAlxidqxkd3mgHTegDaAhHQKq5jxjJ+2F1fZQoaAZHQJTO62Yv38JoB03oA2gIR0CqvqlvQ4S6dX2UKGgGR0CV7YD2JzkqaAdN6ANoCEdAqsM9UdaMaXV9lChoBkdAkuPhwhnrZGgHTegDaAhHQKrGfnuiN851fZQoaAZHQJUyNiz9jwxoB03oA2gIR0CqxxLEk0JodX2UKGgGR0CRy9s8PnSwaAdN6ANoCEdAqs3pO58Sf3V9lChoBkdAk3DVMZgogGgHTegDaAhHQKrSDJT2nKp1fZQoaAZHQJCIFOfukUNoB03oA2gIR0Cq1BpAMUh3dX2UKGgGR0CSBwP7el9CaAdN6ANoCEdAqtR17D2rXHV9lChoBkdAlMheNHYpUmgHTegDaAhHQKrZtW3BpHt1fZQoaAZHQJPBHdP+GXZoB03oA2gIR0Cq3eQnhKlIdX2UKGgGR0CBGPcY64lQaAdN6ANoCEdAquB9p/PPcHV9lChoBkdAlPZc2NvOyGgHTegDaAhHQKrhBlFtsN51fZQoaAZHQJlPDXUYsNFoB03oA2gIR0Cq6PgaFVT8dX2UKGgGR0CVfshQ3xWlaAdN6ANoCEdAqu0AJJGvwHV9lChoBkdAlrJEkSmIkGgHTegDaAhHQKru/qqwQlN1fZQoaAZHQJEaoVi4J/poB03oA2gIR0Cq72CsGPgfdX2UKGgGR0CQzomCyyD7aAdN6ANoCEdAqvTOA/cFhXV9lChoBkdAl7vZWaMJhWgHTegDaAhHQKr40UWVNYd1fZQoaAZHQJTkQ8+zMRpoB03oA2gIR0Cq+tzCLuQZdX2UKGgGR0CUISUnG828aAdN6ANoCEdAqvs1hy8zynV9lChoBkdAkm1VTR6WxGgHTegDaAhHQKsDQBSUC7t1fZQoaAZHQJXp6oddVvNoB03oA2gIR0CrCDfkWAPNdX2UKGgGR0CSqbER8MNMaAdN6ANoCEdAqwo1Eb5uZXV9lChoBkdAkc9zV+Zw42gHTegDaAhHQKsKkRDkU9J1fZQoaAZHQH0PpjMFEApoB03oA2gIR0CrD76bnX/YdX2UKGgGR0CSGHUwSJ0oaAdN6ANoCEdAqxPcEgW8AnV9lChoBkdAkTPZvLowEmgHTegDaAhHQKsV11OCXhR1fZQoaAZHQIyotDc/MW5oB03oA2gIR0CrFjJAdGRWdX2UKGgGR0CUnjaxoqTbaAdN6ANoCEdAqxyBk5IYnHV9lChoBkdAkyVGnXNC7mgHTegDaAhHQKsjBIeYD1Z1fZQoaAZHQJavAJjUd7xoB03oA2gIR0CrJQVYZEUkdX2UKGgGR0CVhZBUrCm/aAdN6ANoCEdAqyVi11GLDXV9lChoBkdAlStsBIWgvmgHTegDaAhHQKsqt3xnWat1fZQoaAZHQJSZVcB2fTVoB03oA2gIR0CrLwI8hcJMdX2UKGgGR0CTyxvkili0aAdN6ANoCEdAqzEZpnHvMXV9lChoBkdAk6XlbNbC8GgHTegDaAhHQKsxdgflp491fZQoaAZHQJTmpVNpM6BoB03oA2gIR0CrNuVWKdhBdX2UKGgGR0CVPjuMdcSoaAdN6ANoCEdAqz3CaEzwdHV9lChoBkdAk8xDzErGzmgHTegDaAhHQKtAmT2WY4R1fZQoaAZHQJSXXLhaTwFoB03oA2gIR0CrQPLkbPyDdX2UKGgGR0CRH2Oo5xR3aAdN6ANoCEdAq0Y86JZW73V9lChoBkdAlRsR73PAwmgHTegDaAhHQKtKYDAaef91fZQoaAZHQJTk619fCyhoB03oA2gIR0CrTG9RR/EwdX2UKGgGR0CUzuICEHt4aAdN6ANoCEdAq0zIL3K0U3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7275a718e89e3f0aae1d4757839b9889adcece0f64dfb75299b30ee40eb0ef4
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42ff5d273ea41a2c20080c1d51ca3e7da07a72dd303456ceb21296d9db8eda31
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f50806af0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f50806af160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f50806af1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f50806af280>", "_build": "<function ActorCriticPolicy._build at 0x7f50806af310>", "forward": "<function ActorCriticPolicy.forward at 0x7f50806af3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f50806af430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f50806af4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f50806af550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f50806af5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f50806af670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f50806af700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f50806ae880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680800955553899145, "learning_rate": 0.0009, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/TX2/SH/LkoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAL+Rz73JazE/qmv6Pi1YMj7kIMq/sbgwvpDnor+wpRw/+/F9PweSCb+V0YS/DgnovbQpYz/F55+/N+ZWPlVue7/qcQQ/MaWXvy9plL8MhXa+7F1MvldRJL8Qe4a/2rWNPAl0Sj+6ecU++ZX3PnDUkL8lkTQ/hk2av8bw076fmBk/wNzMvoV0FD4zQbk+7mKuvb3Igj/vVuW8eX7iPzmiRj67Eam/jWEavvwgL79tE3m/Bv7xPu67fL/krxg9u4hpvDVUHT83M2w/WWuGvyVo1jwJdEo/unnFPvmV9z5w1JC/PwMbPnztm7+ZVt2+JR0YP0Mfqr/l882+g7n0PnnIwr5dS4M/VVtUveoLcT95S+I80jCzvsEIlr+tK7W8DewewLyULT4kvLm+jUAZP5pdjT0KXyw/WI08v8Ko8r6941g/CXRKP7p5xT75lfc+cNSQv5jAz776alC/zw1HPSQBZT6yTzY/upZ5wKMNIT7bKAO/4dpWPdvgnT9dytw97fxCPuI/ez/12dE/FjEoPypTvD+ycxW9xqMaQBxSWD81gxhAkdBLvp7hEsD7Q1k+jcGkP8raob+6ecU+nVkEwHDUkL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADraa+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWRDSPQAAAAA4d+W/AAAAAJMZjLwAAAAAZ7bvPwAAAAAQfBs9AAAAAIFb8D8AAAAAK/QOPgAAAABYkeO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWpHmtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHH4BT4AAAAA++PqvwAAAADVR0Q9AAAAADI5+z8AAAAAaHPpvQAAAABYEv4/AAAAAK1PxD0AAAAA0ZUAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhJyrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDVN7c9AAAAAOzm+L8AAAAAKI6xvQAAAABhnuQ/AAAAAI01rb0AAAAAlmnoPwAAAABqsRY7AAAAAB5n7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIZ2i2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZ5AQvgAAAACQ99+/AAAAAMXs3r0AAAAADw32PwAAAAAkwWy9AAAAADR79z8AAAAAcF4DPgAAAABe1O2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJKFc6q814yMAWyUTegDjAF0lEdAqgO8GRmseXV9lChoBkdAinhLL6k692gHTegDaAhHQKoH5WMju8d1fZQoaAZHQJDLpt8/lhhoB03oA2gIR0CqCgIiTt9hdX2UKGgGR0CQBbd6sySFaAdN6ANoCEdAqgpjIHTqjnV9lChoBkdAken2Y0EX+GgHTegDaAhHQKoQBYwIt191fZQoaAZHQHn6FTWGyopoB03oA2gIR0CqFJqzJIUbdX2UKGgGR0CLnblXiiqRaAdN6ANoCEdAqhfJfF72MHV9lChoBkdAeXfwZwXIl2gHTegDaAhHQKoYYmw7kn11fZQoaAZHQJKPZ8iOeatoB03oA2gIR0CqH1SMcZLqdX2UKGgGR0CStgarWAf/aAdN6ANoCEdAqiN62KEWZnV9lChoBkdAkNQreyiVSmgHTegDaAhHQKolgIfKZD11fZQoaAZHQJMocyDZlFtoB03oA2gIR0CqJdeVkc0cdX2UKGgGR0CSKAir1dxAaAdN6ANoCEdAqist6Vt4zXV9lChoBkdAkXByWZ7Xx2gHTegDaAhHQKovRfYzzmR1fZQoaAZHQJMkPxFy7wtoB03oA2gIR0CqMb/2TPjXdX2UKGgGR0CT4QxwhnrZaAdN6ANoCEdAqjJGbExZdXV9lChoBkdAkpeLfxc3VGgHTegDaAhHQKo6WghbGFV1fZQoaAZHQJORfK8tf5VoB03oA2gIR0CqPqZZ8rqddX2UKGgGR0CRRt9srNGFaAdN6ANoCEdAqkCwnF5v+HV9lChoBkdAkpgx7iQ1aWgHTegDaAhHQKpBCdwvQF91fZQoaAZHQJWgg4Ia99NoB03oA2gIR0CqRk4Ny5qedX2UKGgGR0CPStEqlP8AaAdN6ANoCEdAqkp5UedTYXV9lChoBkdAk0Xy0v4/NmgHTegDaAhHQKpMd5fMOgB1fZQoaAZHQJN5vg5zYEpoB03oA2gIR0CqTNDRc/t6dX2UKGgGR0CTR+yEL6UJaAdN6ANoCEdAqlUGeYlY2nV9lChoBkdAk62m07bL2mgHTegDaAhHQKpZ9eVLSNR1fZQoaAZHQJRi9W+49X9oB03oA2gIR0CqXBgg5imVdX2UKGgGR0CW4e7LdN34aAdN6ANoCEdAqlx7TfBN23V9lChoBkdAljjRgRbr1WgHTegDaAhHQKphxa6BiCt1fZQoaAZHQJMJ6Cz1K5FoB03oA2gIR0CqZdzgMtsfdX2UKGgGR0CWs5WluWKNaAdN6ANoCEdAqmfrrqt5lnV9lChoBkdAlzB5A6dUbWgHTegDaAhHQKpoSj3VTaV1fZQoaAZHQJYVHu5SWJJoB03oA2gIR0CqbyciwB5pdX2UKGgGR0CS8HJ0nw5OaAdN6ANoCEdAqnU752yLRHV9lChoBkdAlRilBdD6WWgHTegDaAhHQKp3QBYmsvJ1fZQoaAZHQJWrgoKD019oB03oA2gIR0Cqd5y13MY/dX2UKGgGR0CVFZIqbz9TaAdN6ANoCEdAqny2M0gr6XV9lChoBkdAko279uP3jGgHTegDaAhHQKqA+msvIwN1fZQoaAZHQJWPguJ1q35oB03oA2gIR0Cqgw+9rXUZdX2UKGgGR0CXAJ+so2GZaAdN6ANoCEdAqoN8zdk8R3V9lChoBkdAltMW4qgAZWgHTegDaAhHQKqJcABDG991fZQoaAZHQJdtFByCFsZoB03oA2gIR0CqkEnezlcRdX2UKGgGR0CVBdhC+lCUaAdN6ANoCEdAqpK6UVzp5nV9lChoBkdAksjazVtoBmgHTegDaAhHQKqTEoNutOp1fZQoaAZHQJPmoA4n4PBoB03oA2gIR0CqmF3YDklvdX2UKGgGR0CXaJ0l7dBTaAdN6ANoCEdAqpxzxy4nW3V9lChoBkdAk9VcYl6Z6WgHTegDaAhHQKqeaVdonKJ1fZQoaAZHQI1RU0gr6LxoB03oA2gIR0CqnsDVYp2EdX2UKGgGR0CWlQNHYpUhaAdN6ANoCEdAqqPOJ1q33HV9lChoBkdAmJWFfJFLFmgHTegDaAhHQKqpgis4ku91fZQoaAZHQJYvvncL0BhoB03oA2gIR0CqrNLofSx8dX2UKGgGR0CVa2rIo3JgaAdN6ANoCEdAqq1pFEy+H3V9lChoBkdAjeLs3qAz6GgHTegDaAhHQKqy949HMEB1fZQoaAZHQH9asj3VTaVoB03oA2gIR0Cqt0S1uzhQdX2UKGgGR0CSC4mgam4zaAdN6ANoCEdAqrk4uK4x13V9lChoBkdAlxidqxkd3mgHTegDaAhHQKq5jxjJ+2F1fZQoaAZHQJTO62Yv38JoB03oA2gIR0CqvqlvQ4S6dX2UKGgGR0CV7YD2JzkqaAdN6ANoCEdAqsM9UdaMaXV9lChoBkdAkuPhwhnrZGgHTegDaAhHQKrGfnuiN851fZQoaAZHQJUyNiz9jwxoB03oA2gIR0CqxxLEk0JodX2UKGgGR0CRy9s8PnSwaAdN6ANoCEdAqs3pO58Sf3V9lChoBkdAk3DVMZgogGgHTegDaAhHQKrSDJT2nKp1fZQoaAZHQJCIFOfukUNoB03oA2gIR0Cq1BpAMUh3dX2UKGgGR0CSBwP7el9CaAdN6ANoCEdAqtR17D2rXHV9lChoBkdAlMheNHYpUmgHTegDaAhHQKrZtW3BpHt1fZQoaAZHQJPBHdP+GXZoB03oA2gIR0Cq3eQnhKlIdX2UKGgGR0CBGPcY64lQaAdN6ANoCEdAquB9p/PPcHV9lChoBkdAlPZc2NvOyGgHTegDaAhHQKrhBlFtsN51fZQoaAZHQJlPDXUYsNFoB03oA2gIR0Cq6PgaFVT8dX2UKGgGR0CVfshQ3xWlaAdN6ANoCEdAqu0AJJGvwHV9lChoBkdAlrJEkSmIkGgHTegDaAhHQKru/qqwQlN1fZQoaAZHQJEaoVi4J/poB03oA2gIR0Cq72CsGPgfdX2UKGgGR0CQzomCyyD7aAdN6ANoCEdAqvTOA/cFhXV9lChoBkdAl7vZWaMJhWgHTegDaAhHQKr40UWVNYd1fZQoaAZHQJTkQ8+zMRpoB03oA2gIR0Cq+tzCLuQZdX2UKGgGR0CUISUnG828aAdN6ANoCEdAqvs1hy8zynV9lChoBkdAkm1VTR6WxGgHTegDaAhHQKsDQBSUC7t1fZQoaAZHQJXp6oddVvNoB03oA2gIR0CrCDfkWAPNdX2UKGgGR0CSqbER8MNMaAdN6ANoCEdAqwo1Eb5uZXV9lChoBkdAkc9zV+Zw42gHTegDaAhHQKsKkRDkU9J1fZQoaAZHQH0PpjMFEApoB03oA2gIR0CrD76bnX/YdX2UKGgGR0CSGHUwSJ0oaAdN6ANoCEdAqxPcEgW8AnV9lChoBkdAkTPZvLowEmgHTegDaAhHQKsV11OCXhR1fZQoaAZHQIyotDc/MW5oB03oA2gIR0CrFjJAdGRWdX2UKGgGR0CUnjaxoqTbaAdN6ANoCEdAqxyBk5IYnHV9lChoBkdAkyVGnXNC7mgHTegDaAhHQKsjBIeYD1Z1fZQoaAZHQJavAJjUd7xoB03oA2gIR0CrJQVYZEUkdX2UKGgGR0CVhZBUrCm/aAdN6ANoCEdAqyVi11GLDXV9lChoBkdAlStsBIWgvmgHTegDaAhHQKsqt3xnWat1fZQoaAZHQJSZVcB2fTVoB03oA2gIR0CrLwI8hcJMdX2UKGgGR0CTyxvkili0aAdN6ANoCEdAqzEZpnHvMXV9lChoBkdAk6XlbNbC8GgHTegDaAhHQKsxdgflp491fZQoaAZHQJTmpVNpM6BoB03oA2gIR0CrNuVWKdhBdX2UKGgGR0CVPjuMdcSoaAdN6ANoCEdAqz3CaEzwdHV9lChoBkdAk8xDzErGzmgHTegDaAhHQKtAmT2WY4R1fZQoaAZHQJSXXLhaTwFoB03oA2gIR0CrQPLkbPyDdX2UKGgGR0CRH2Oo5xR3aAdN6ANoCEdAq0Y86JZW73V9lChoBkdAlRsR73PAwmgHTegDaAhHQKtKYDAaef91fZQoaAZHQJTk619fCyhoB03oA2gIR0CrTG9RR/EwdX2UKGgGR0CUzuICEHt4aAdN6ANoCEdAq0zIL3K0U3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (923 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1351.51516953217, "std_reward": 140.57062125822455, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-06T18:10:47.059363"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0906e79894bb7277b6bee934a29911c292c38ad7444d7b7abcadca9ac9f0daff
3
+ size 2136