Upload 14 files
Browse files- .gitattributes +1 -0
- BackPropogation.py +53 -0
- IMDB Dataset.csv +3 -0
- Perceptron.py +51 -0
- backprop_model.pkl +3 -0
- class.py +142 -0
- dnn_main.py +32 -0
- imdb_model.h5 +3 -0
- imdb_perceptron_model.pkl +3 -0
- lstm_imdb_model.h5 +3 -0
- perceptron_model.joblib +3 -0
- sms_spam_detection_dnnmodel.h5 +3 -0
- smsspam.py +94 -0
- tokeniser.pkl +3 -0
- tumor_detection_model.h5 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
IMDB[[:space:]]Dataset.csv filter=lfs diff=lfs merge=lfs -text
|
BackPropogation.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
|
5 |
+
class BackPropogation:
|
6 |
+
def __init__(self,learning_rate=0.01, epochs=100,activation_function='step'):
|
7 |
+
self.bias = 0
|
8 |
+
self.learning_rate = learning_rate
|
9 |
+
self.max_epochs = epochs
|
10 |
+
self.activation_function = activation_function
|
11 |
+
|
12 |
+
|
13 |
+
def activate(self, x):
|
14 |
+
if self.activation_function == 'step':
|
15 |
+
return 1 if x >= 0 else 0
|
16 |
+
elif self.activation_function == 'sigmoid':
|
17 |
+
return 1 if (1 / (1 + np.exp(-x)))>=0.5 else 0
|
18 |
+
elif self.activation_function == 'relu':
|
19 |
+
return 1 if max(0,x)>=0.5 else 0
|
20 |
+
|
21 |
+
def fit(self, X, y):
|
22 |
+
error_sum=0
|
23 |
+
n_features = X.shape[1]
|
24 |
+
self.weights = np.zeros((n_features))
|
25 |
+
for epoch in tqdm(range(self.max_epochs)):
|
26 |
+
for i in range(len(X)):
|
27 |
+
inputs = X[i]
|
28 |
+
target = y[i]
|
29 |
+
weighted_sum = np.dot(inputs, self.weights) + self.bias
|
30 |
+
prediction = self.activate(weighted_sum)
|
31 |
+
|
32 |
+
# Calculating loss and updating weights.
|
33 |
+
error = target - prediction
|
34 |
+
self.weights += self.learning_rate * error * inputs
|
35 |
+
self.bias += self.learning_rate * error
|
36 |
+
|
37 |
+
print(f"Updated Weights after epoch {epoch} with {self.weights}")
|
38 |
+
print("Training Completed")
|
39 |
+
|
40 |
+
def predict(self, X):
|
41 |
+
predictions = []
|
42 |
+
for i in range(len(X)):
|
43 |
+
inputs = X[i]
|
44 |
+
weighted_sum = np.dot(inputs, self.weights) + self.bias
|
45 |
+
prediction = self.activate(weighted_sum)
|
46 |
+
predictions.append(prediction)
|
47 |
+
return predictions
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
|
IMDB Dataset.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfc447764f82be365fa9c2beef4e8df89d3919e3da95f5088004797d79695aa2
|
3 |
+
size 66212309
|
Perceptron.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from tqdm import tqdm
|
3 |
+
import joblib
|
4 |
+
|
5 |
+
|
6 |
+
class Perceptron:
|
7 |
+
|
8 |
+
def __init__(self,learning_rate=0.01, epochs=100,activation_function='step'):
|
9 |
+
self.bias = 0
|
10 |
+
self.learning_rate = learning_rate
|
11 |
+
self.max_epochs = epochs
|
12 |
+
self.activation_function = activation_function
|
13 |
+
|
14 |
+
|
15 |
+
def activate(self, x):
|
16 |
+
if self.activation_function == 'step':
|
17 |
+
return 1 if x >= 0 else 0
|
18 |
+
elif self.activation_function == 'sigmoid':
|
19 |
+
return 1 if (1 / (1 + np.exp(-x)))>=0.5 else 0
|
20 |
+
elif self.activation_function == 'relu':
|
21 |
+
return 1 if max(0,x)>=0.5 else 0
|
22 |
+
|
23 |
+
def fit(self, X, y):
|
24 |
+
n_features = X.shape[1]
|
25 |
+
self.weights = np.random.randint(n_features, size=(n_features))
|
26 |
+
for epoch in tqdm(range(self.max_epochs)):
|
27 |
+
for i in range(len(X)):
|
28 |
+
inputs = X[i]
|
29 |
+
target = y[i]
|
30 |
+
weighted_sum = np.dot(inputs, self.weights) + self.bias
|
31 |
+
prediction = self.activate(weighted_sum)
|
32 |
+
print("Training Completed")
|
33 |
+
|
34 |
+
def predict(self, X):
|
35 |
+
predictions = []
|
36 |
+
for i in range(len(X)):
|
37 |
+
inputs = X[i]
|
38 |
+
weighted_sum = np.dot(inputs, self.weights) + self.bias
|
39 |
+
prediction = self.activate(weighted_sum)
|
40 |
+
predictions.append(prediction)
|
41 |
+
return predictions
|
42 |
+
|
43 |
+
# Save the Perceptron model
|
44 |
+
joblib.dump(Perceptron, 'perceptron_model.joblib')
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
backprop_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08f18405b62db7924aebb1b734d1b1895d4b2a3b1f42b9b34651329488a80e1d
|
3 |
+
size 1896
|
class.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
import joblib
|
6 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
7 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
8 |
+
from tensorflow.keras.applications.inception_v3 import preprocess_input
|
9 |
+
import cv2
|
10 |
+
from Perceptron import Perceptron
|
11 |
+
from sklearn.linear_model import Perceptron
|
12 |
+
import tensorflow as tf
|
13 |
+
import joblib
|
14 |
+
import pickle
|
15 |
+
from numpy import argmax
|
16 |
+
|
17 |
+
|
18 |
+
# Load the tokenizer using pickle
|
19 |
+
with open(r'tokeniser.pkl', 'rb') as handle:
|
20 |
+
loaded_tokenizer = pickle.load(handle)
|
21 |
+
|
22 |
+
# Load saved models
|
23 |
+
image_model = load_model('tumor_detection_model.h5')
|
24 |
+
dnn_model = load_model('imdb_model.h5')
|
25 |
+
loaded_model = tf.keras.models.load_model('sms_spam_detection_dnnmodel.h5')
|
26 |
+
perceptron_model = joblib.load('perceptron_model.joblib')
|
27 |
+
backprop_model = joblib.load('backprop_model.pkl')
|
28 |
+
|
29 |
+
|
30 |
+
# Streamlit app
|
31 |
+
st.title("Classification")
|
32 |
+
|
33 |
+
# Sidebar
|
34 |
+
task = st.sidebar.selectbox("Select Task", ["Tumor Detection", "Sentiment Classification"])
|
35 |
+
|
36 |
+
def preprocess_text(text):
|
37 |
+
tokenizer = Tokenizer()
|
38 |
+
tokenizer.fit_on_texts([text])
|
39 |
+
sequences = tokenizer.texts_to_sequences([text])
|
40 |
+
preprocessed_text = pad_sequences(sequences, maxlen=4)
|
41 |
+
|
42 |
+
return preprocessed_text
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
def predict_dnn(preprocessed_text):
|
47 |
+
preprocessed_text = preprocessed_text.reshape((1, 4)) # Adjust the shape according to your model's input shape
|
48 |
+
|
49 |
+
prediction = dnn_model.predict(preprocessed_text)
|
50 |
+
st.write("DNN Prediction:", prediction)
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
def predict_rnn(input_text):
|
55 |
+
# Process input text similarly to training data
|
56 |
+
encoded_input = loaded_tokenizer.texts_to_sequences([input_text])
|
57 |
+
padded_input = tf.keras.preprocessing.sequence.pad_sequences(encoded_input, maxlen=10, padding='post')
|
58 |
+
prediction = loaded_model.predict(padded_input)
|
59 |
+
if prediction > 0.5:
|
60 |
+
return "spam"
|
61 |
+
else:
|
62 |
+
return "ham"
|
63 |
+
|
64 |
+
|
65 |
+
def predict_custom_perceptron(preprocessed_text):
|
66 |
+
perceptron = CustomPerceptron(epochs=10) # Using the custom Perceptron
|
67 |
+
prediction = perceptron.predict(preprocessed_text)
|
68 |
+
st.write("Custom Perceptron Prediction:", prediction)
|
69 |
+
|
70 |
+
def predict_sklearn_perceptron(preprocessed_text):
|
71 |
+
perceptron = SklearnPerceptron() # Using the sklearn Perceptron
|
72 |
+
prediction = perceptron.predict(preprocessed_text)
|
73 |
+
st.write("Sklearn Perceptron Prediction:", prediction)
|
74 |
+
|
75 |
+
def predict_backpropagation(preprocessed_text):
|
76 |
+
prediction = backprop_model.predict(preprocessed_text)
|
77 |
+
st.write("Backpropagation Prediction:", prediction)
|
78 |
+
|
79 |
+
# make a prediction for CNN
|
80 |
+
def preprocess_image(image):
|
81 |
+
image = image.resize((299, 299))
|
82 |
+
image_array = np.array(image)
|
83 |
+
preprocessed_image = preprocess_input(image_array)
|
84 |
+
|
85 |
+
return preprocessed_image
|
86 |
+
|
87 |
+
|
88 |
+
def make_prediction_cnn(image, image_model):
|
89 |
+
img = image.resize((128, 128))
|
90 |
+
img_array = np.array(img)
|
91 |
+
img_array = img_array.reshape((1, img_array.shape[0], img_array.shape[1], img_array.shape[2]))
|
92 |
+
|
93 |
+
preprocessed_image = preprocess_input(img_array)
|
94 |
+
prediction = image_model.predict(preprocessed_image)
|
95 |
+
|
96 |
+
if prediction > 0.5:
|
97 |
+
st.write("Tumor Detected")
|
98 |
+
else:
|
99 |
+
st.write("No Tumor")
|
100 |
+
|
101 |
+
if task == "Sentiment Classification":
|
102 |
+
st.subheader("Choose Model")
|
103 |
+
model_choice = st.radio("Select Model", ["DNN", "RNN", "Perceptron", "Backpropagation"])
|
104 |
+
|
105 |
+
st.subheader("Text Input")
|
106 |
+
text_input = st.text_area("Enter Text")
|
107 |
+
|
108 |
+
if st.button("Predict"):
|
109 |
+
# Preprocess the text
|
110 |
+
preprocessed_text = preprocess_text(text_input)
|
111 |
+
if model_choice == "DNN":
|
112 |
+
predict_dnn(preprocessed_text)
|
113 |
+
elif model_choice == "RNN":
|
114 |
+
if text_input:
|
115 |
+
prediction_result = predict_rnn(text_input)
|
116 |
+
st.write(f"The message is classified as: {prediction_result}")
|
117 |
+
else:
|
118 |
+
st.write("Please enter some text for prediction")
|
119 |
+
elif model_choice == "Custom Perceptron":
|
120 |
+
predict_custom_perceptron(preprocessed_text)
|
121 |
+
elif model_choice == "Sklearn Perceptron":
|
122 |
+
predict_sklearn_perceptron(preprocessed_text)
|
123 |
+
elif model_choice == "Backpropagation":
|
124 |
+
predict_backpropagation(preprocessed_text)
|
125 |
+
|
126 |
+
else:
|
127 |
+
st.subheader("Choose Model")
|
128 |
+
model_choice = st.radio("Select Model", ["CNN"])
|
129 |
+
|
130 |
+
st.subheader("Image Input")
|
131 |
+
image_input = st.file_uploader("Choose an image...", type="jpg")
|
132 |
+
|
133 |
+
if image_input is not None:
|
134 |
+
image = Image.open(image_input)
|
135 |
+
st.image(image, caption="Uploaded Image.", use_column_width=True)
|
136 |
+
|
137 |
+
# Preprocess the image
|
138 |
+
preprocessed_image = preprocess_image(image)
|
139 |
+
|
140 |
+
if st.button("Predict"):
|
141 |
+
if model_choice == "CNN":
|
142 |
+
make_prediction_cnn(image, image_model)
|
dnn_main.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras import layers, models
|
3 |
+
from tensorflow.keras.datasets import imdb
|
4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
|
6 |
+
# Load the IMDb dataset
|
7 |
+
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
|
8 |
+
|
9 |
+
# Pad sequences to a fixed length
|
10 |
+
max_length = 500
|
11 |
+
train_data = pad_sequences(train_data, maxlen=max_length)
|
12 |
+
test_data = pad_sequences(test_data, maxlen=max_length)
|
13 |
+
|
14 |
+
# Define the model
|
15 |
+
model = models.Sequential()
|
16 |
+
model.add(layers.Embedding(input_dim=10000, output_dim=16, input_length=max_length))
|
17 |
+
model.add(layers.Flatten())
|
18 |
+
model.add(layers.Dense(32, activation='relu'))
|
19 |
+
model.add(layers.Dense(1, activation='sigmoid'))
|
20 |
+
|
21 |
+
# Compile the model
|
22 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
23 |
+
|
24 |
+
# Display the model summary
|
25 |
+
model.summary()
|
26 |
+
|
27 |
+
# Train the model
|
28 |
+
history = model.fit(train_data, train_labels, epochs=5, batch_size=32, validation_split=0.2)
|
29 |
+
|
30 |
+
# Evaluate the model on the test set
|
31 |
+
test_loss, test_accuracy = model.evaluate(test_data, test_labels)
|
32 |
+
print(f'Test Accuracy: {test_accuracy * 100:.2f}%')
|
imdb_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:074b0397ced57e43c8d7a3a75d123088f1fb34e5b864f555c929523570112108
|
3 |
+
size 5024248
|
imdb_perceptron_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94098089d5f8b390533c214ddf2804469db9772089ac429c336a02f2d44927c6
|
3 |
+
size 1063
|
lstm_imdb_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b03fc488fed00a614e9c9d85b4bfc4c3de4bf51f950ab3fdbc959cc8736f456c
|
3 |
+
size 2594296
|
perceptron_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2107f3f53a82a656bbdd42e2c6030ef645299421845ef9408b2db5afca1869f5
|
3 |
+
size 29
|
sms_spam_detection_dnnmodel.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98a69a1ccd2e7048bb72447cff024b354fa7cdec602de3d0b31f6129963951f9
|
3 |
+
size 3160600
|
smsspam.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import seaborn as sns
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
import tensorflow as tf
|
6 |
+
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
|
7 |
+
|
8 |
+
print("---------------------- Downloading Dataset -------------------------\n")
|
9 |
+
|
10 |
+
dataset = pd.read_csv('https://raw.githubusercontent.com/adityaiiitmk/Datasets/master/SMSSpamCollection',sep='\t',names=['label','message'])
|
11 |
+
|
12 |
+
print("---------------------- -------------------------\n")
|
13 |
+
print(dataset.head())
|
14 |
+
print("---------------------- -------------------------")
|
15 |
+
print(dataset.groupby('label').describe())
|
16 |
+
print("---------------------- -------------------------")
|
17 |
+
dataset['label'] = dataset['label'].map( {'spam': 1, 'ham': 0} )
|
18 |
+
X = dataset['message'].values
|
19 |
+
y = dataset['label'].values
|
20 |
+
|
21 |
+
print("---------------------- Train Test Split -------------------------\n")
|
22 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
|
23 |
+
tokeniser = tf.keras.preprocessing.text.Tokenizer()
|
24 |
+
tokeniser.fit_on_texts(X_train) #learn vocabulary assigning unique int to each word
|
25 |
+
encoded_train = tokeniser.texts_to_sequences(X_train)
|
26 |
+
encoded_test = tokeniser.texts_to_sequences(X_test)
|
27 |
+
print(encoded_train[0:2])
|
28 |
+
print("---------------------- Padding -------------------------\n")
|
29 |
+
max_length = 10 #legth of sequence
|
30 |
+
padded_train = tf.keras.preprocessing.sequence.pad_sequences(encoded_train, maxlen=max_length, padding='post')
|
31 |
+
padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=max_length, padding='post')
|
32 |
+
print(padded_train[0:2])
|
33 |
+
|
34 |
+
print("---------------------- -------------------------\n")
|
35 |
+
|
36 |
+
vocab_size = len(tokeniser.word_index)+1
|
37 |
+
|
38 |
+
# define the model
|
39 |
+
|
40 |
+
print("---------------------- Modelling -------------------------\n")
|
41 |
+
|
42 |
+
|
43 |
+
model=tf.keras.models.Sequential([
|
44 |
+
tf.keras.layers.Embedding(input_dim=vocab_size,output_dim= 24, input_length=max_length),
|
45 |
+
tf.keras.layers.SimpleRNN(24, return_sequences=False), #return last time output
|
46 |
+
tf.keras.layers.Dense(64, activation='relu'),
|
47 |
+
tf.keras.layers.Dense(32, activation='relu'),
|
48 |
+
tf.keras.layers.Dense(1, activation='sigmoid')
|
49 |
+
])
|
50 |
+
|
51 |
+
# compile the model
|
52 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
53 |
+
|
54 |
+
print("---------------------- -------------------------\n")
|
55 |
+
|
56 |
+
# summarize the model
|
57 |
+
print(model.summary())
|
58 |
+
|
59 |
+
print("---------------------- -------------------------\n")
|
60 |
+
|
61 |
+
early_stop = tf.keras.callbacks.EarlyStopping(monitor='accuracy', mode='min', patience=10) #callback set of functions can applied different stages of training
|
62 |
+
|
63 |
+
print("---------------------- Training -------------------------\n")
|
64 |
+
|
65 |
+
# fit the model
|
66 |
+
model.fit(x=padded_train,
|
67 |
+
y=y_train,
|
68 |
+
epochs=50,
|
69 |
+
validation_data=(padded_test, y_test),
|
70 |
+
callbacks=[early_stop]
|
71 |
+
)
|
72 |
+
print("---------------------- -------------------------\n")
|
73 |
+
|
74 |
+
|
75 |
+
def c_report(y_true, y_pred):
|
76 |
+
print("Classification Report")
|
77 |
+
print(classification_report(y_true, y_pred))
|
78 |
+
acc_sc = accuracy_score(y_true, y_pred)
|
79 |
+
print(f"Accuracy : {str(round(acc_sc,2)*100)}")
|
80 |
+
return acc_sc
|
81 |
+
|
82 |
+
def plot_confusion_matrix(y_true, y_pred):
|
83 |
+
mtx = confusion_matrix(y_true, y_pred)
|
84 |
+
sns.heatmap(mtx, annot=True, fmt='d', linewidths=.5, cmap="Blues", cbar=False)
|
85 |
+
plt.ylabel('True label')
|
86 |
+
plt.xlabel('Predicted label')
|
87 |
+
plt.savefig(r"C:\Users\Dell\Documents\Sem !!!\Deep Learning\App\Results\test.jpg")
|
88 |
+
|
89 |
+
|
90 |
+
preds = (model.predict(padded_test) > 0.5).astype("int32")
|
91 |
+
c_report(y_test, preds)
|
92 |
+
|
93 |
+
plot_confusion_matrix(y_test, preds)
|
94 |
+
model.save("RNN/results/model/spam_model")
|
tokeniser.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64c70b8c735b6a8d9d6afda7908154c7b8398e94bcf6cdcb1f70977f93686405
|
3 |
+
size 290462
|
tumor_detection_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95e3cd70401c053d4f32ca737a74f097d3877e4d4244480c230a6b43c7e4eba0
|
3 |
+
size 391811360
|