Vis03al commited on
Commit
79a01af
1 Parent(s): 066ae58

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 249.67 +/- 21.02
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a9f44d670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a9f44d700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a9f44d790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a9f44d820>", "_build": "<function ActorCriticPolicy._build at 0x7f6a9f44d8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6a9f44d940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6a9f44d9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a9f44da60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6a9f44daf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a9f44db80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a9f44dc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a9f44dca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6a9f4458d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673601486781515278, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbl9LykTBy7eW0oO+AEbzzdGBM8629QvQAAgD8AAIA/gG+8vYFdjbwQK2W9Jm/0vPA8AD0RHwE+AAAAAAAAgD8zUuq8gvI4Pql1tb3HbXy+aKalvG78mbwAAAAAAAAAALMqAb3hEIa6qrOOu6MpujfVyn66mvYVtwAAgD8AAIA/pmq4vVK4uLn1SlC3tWU8skvH6Lr1znA2AACAPwAAgD8zGnW9SN+Duuin5bbt6+exi1lLOr5LBzYAAIA/AACAP2aoez1UQDA/od+jvSEIib4ekmG8YyVEvQAAAAAAAAAAMw6mvfZsUbo/UaY2LZ1ntuFuYrrHvY21AACAPwAAAAAAL4I8pKOxP0oRHT6hMWK+FLp8PGI99j0AAAAAAAAAAABKYrwPc1U92LFuPW00Nb6gZYw99Yv2vAAAAAAAAAAAQJa5vem3Dz6gWNI97jh5vu2H+zwQaD29AAAAAAAAAABmXj27Oqy8P15LBb0vpmY9HbyePNPfhD0AAAAAAAAAAM2dQb7IrzE/WkVXPdRxhL6H0UC94oLCPQAAAAAAAAAAZnMRvV1gKj7jw1K9cMVdvnepfr1Gp6q8AAAAAAAAAAAaaIm99nReug6fkbmaG3G0lgPMuRX9ozgAAIA/AACAP0A54r2Prj26+g6Tujc3dbZioU86LWqpOQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIusDlseaqYUCUhpRSlIwBbJRN6AOMAXSUR0CQdX93r2QGdX2UKGgGaAloD0MI4+E9BxZPcECUhpRSlGgVTS8DaBZHQJB1iXa8HwB1fZQoaAZoCWgPQwgb2gBsQItyQJSGlFKUaBVN6AJoFkdAkHibYbsF+3V9lChoBmgJaA9DCEmfVtEfQm5AlIaUUpRoFU0lAmgWR0CQefqM3qA0dX2UKGgGaAloD0MINsmP+BUWXkCUhpRSlGgVTegDaBZHQJB6oMrmQsB1fZQoaAZoCWgPQwiGkV7U7r9wQJSGlFKUaBVN1wJoFkdAkI2J40Mw13V9lChoBmgJaA9DCB1aZDtfbHBAlIaUUpRoFU2iAmgWR0CQjbPWQOnVdX2UKGgGaAloD0MIEQGHUKXQckCUhpRSlGgVTXkBaBZHQJCP/solUqB1fZQoaAZoCWgPQwgzxLEuLllxQJSGlFKUaBVNGwFoFkdAkJD9lqagEnV9lChoBmgJaA9DCBhCzvv/dExAlIaUUpRoFUvtaBZHQJCSHPcBU711fZQoaAZoCWgPQwgC02ndBuNkQJSGlFKUaBVN6ANoFkdAkJPdipeeF3V9lChoBmgJaA9DCAe3tYXni2ZAlIaUUpRoFU3oA2gWR0CQlR5D7ZWadX2UKGgGaAloD0MIBcJOseoOc0CUhpRSlGgVTRoCaBZHQJCYnybx3FF1fZQoaAZoCWgPQwiMvoI048JlQJSGlFKUaBVN6ANoFkdAkJuuC04R3HV9lChoBmgJaA9DCAJlU67w8W5AlIaUUpRoFU2xAmgWR0CQnItQsPJ8dX2UKGgGaAloD0MINgNckC05cECUhpRSlGgVTRoBaBZHQJCcxXnyNGV1fZQoaAZoCWgPQwjj4NIxZ/lxQJSGlFKUaBVNYwFoFkdAkJ0Hn2ZiNXV9lChoBmgJaA9DCP30nzW/4W5AlIaUUpRoFU0IAmgWR0CQn4k4WDYidX2UKGgGaAloD0MIB5eOOc8sSUCUhpRSlGgVTRMBaBZHQJChdMqSX+l1fZQoaAZoCWgPQwgm5IOeDf9wQJSGlFKUaBVNVgFoFkdAkKLEaya/h3V9lChoBmgJaA9DCHi4HRpWnHBAlIaUUpRoFU3HA2gWR0CQpTIAwPAgdX2UKGgGaAloD0MIRu7p6o7ja0CUhpRSlGgVTWACaBZHQJCpbd0q6OJ1fZQoaAZoCWgPQwg11CgkGT5uQJSGlFKUaBVNWgFoFkdAkKq1C5VfeHV9lChoBmgJaA9DCITVWMJah2xAlIaUUpRoFU2uAmgWR0CQrtTHbRF7dX2UKGgGaAloD0MIesToucVgcUCUhpRSlGgVTdECaBZHQJCxRYeT3Zh1fZQoaAZoCWgPQwhTspyEUnNuQJSGlFKUaBVNjwJoFkdAkLJhZlnRLXV9lChoBmgJaA9DCL4UHjR7ynBAlIaUUpRoFU2qAWgWR0CQssxubZvldX2UKGgGaAloD0MIOxkcJa+ISUCUhpRSlGgVS8poFkdAkLTPT5O8CnV9lChoBmgJaA9DCPUSY5l+mW1AlIaUUpRoFU3HAWgWR0CQtSYFqzqsdX2UKGgGaAloD0MInS6Lic2gZUCUhpRSlGgVTegDaBZHQJC4+2phnap1fZQoaAZoCWgPQwibr5KPXVFkQJSGlFKUaBVN6ANoFkdAkLyN5MURF3V9lChoBmgJaA9DCIMWEjC63W9AlIaUUpRoFU0+AWgWR0CQv1VuaWondX2UKGgGaAloD0MIcTlegeh0cECUhpRSlGgVTfoBaBZHQJC/3xOLzf91fZQoaAZoCWgPQwgZda29z2VxQJSGlFKUaBVNZgJoFkdAkNSKubI91XV9lChoBmgJaA9DCCgn2lVI8WxAlIaUUpRoFU1NAWgWR0CQ1Pxfv4M4dX2UKGgGaAloD0MIJ8Eb0uj6cECUhpRSlGgVTb4BaBZHQJDVFAIIF/x1fZQoaAZoCWgPQwgG81fInNFwQJSGlFKUaBVNZAJoFkdAkNWUzoEB83V9lChoBmgJaA9DCI8ZqIz/I21AlIaUUpRoFU2/AmgWR0CQ1uK7I1cddX2UKGgGaAloD0MIObh0zLl4cECUhpRSlGgVTe8CaBZHQJDW4c81XNl1fZQoaAZoCWgPQwh2ieqtgYpkQJSGlFKUaBVN6ANoFkdAkNpaPn0TUXV9lChoBmgJaA9DCOLkfociRnFAlIaUUpRoFU2PAWgWR0CQ2pzCDVYqdX2UKGgGaAloD0MIDY0ngjjJUUCUhpRSlGgVS9VoFkdAkN3I7FKkEnV9lChoBmgJaA9DCG8sKAxKDm9AlIaUUpRoFU3eA2gWR0CQ4Q9sabWmdX2UKGgGaAloD0MIU+i8xq7GbECUhpRSlGgVTUYBaBZHQJDhNtsN2DB1fZQoaAZoCWgPQwhsCfmg525wQJSGlFKUaBVNHgFoFkdAkOIdhd+ocnV9lChoBmgJaA9DCEWcTrLVO3NAlIaUUpRoFU06AWgWR0CQ4lgkTpPidX2UKGgGaAloD0MI9tIUAU7mcECUhpRSlGgVTWICaBZHQJDkEP1+RYB1fZQoaAZoCWgPQwjjOPBqua5xQJSGlFKUaBVNpAFoFkdAkOUV5nlGPXV9lChoBmgJaA9DCOARFapbn3FAlIaUUpRoFU3cAWgWR0CQ5SxptaZAdX2UKGgGaAloD0MIJ2a9GEqUcECUhpRSlGgVTdcCaBZHQJDnHoMa0hN1fZQoaAZoCWgPQwilLhnHiIVxQJSGlFKUaBVNdgFoFkdAkOdSn5zo2XV9lChoBmgJaA9DCKCkwALYanBAlIaUUpRoFU3mAWgWR0CQ6fpjtoi+dX2UKGgGaAloD0MIlwLS/odickCUhpRSlGgVTbYDaBZHQJDx8YMvysl1fZQoaAZoCWgPQwhDyHn/n/1wQJSGlFKUaBVN8AFoFkdAkPXLb5/LDHV9lChoBmgJaA9DCNwtyQH76XFAlIaUUpRoFU3AAWgWR0CQ9t96Tnq3dX2UKGgGaAloD0MIqfqVzgfycUCUhpRSlGgVTZgDaBZHQJD3e+wkgOl1fZQoaAZoCWgPQwgwmwDDMtNwQJSGlFKUaBVNqQFoFkdAkPk+UliSaHV9lChoBmgJaA9DCLVv7q8el2tAlIaUUpRoFU3YAWgWR0CQ+a2+PBBSdX2UKGgGaAloD0MIPE1mvO1jcUCUhpRSlGgVTRQCaBZHQJD7oaxX4j91fZQoaAZoCWgPQwi0dAXbCAxuQJSGlFKUaBVN0gFoFkdAkPyi1E3KjnV9lChoBmgJaA9DCK6BrRKso25AlIaUUpRoFU2kAWgWR0CQ/OYT0xubdX2UKGgGaAloD0MII4eIm5PicUCUhpRSlGgVTeQBaBZHQJD9aErXlKd1fZQoaAZoCWgPQwgVqwZhbitwQJSGlFKUaBVNMwNoFkdAkQGOtnwocHV9lChoBmgJaA9DCDttjQhG1W1AlIaUUpRoFU1rAWgWR0CRFqIxQBPsdX2UKGgGaAloD0MIgzRj0XTzcECUhpRSlGgVTcQDaBZHQJEWsOkLx7R1fZQoaAZoCWgPQwjMKmwGeN1xQJSGlFKUaBVN5AJoFkdAkRfvPC2tuHV9lChoBmgJaA9DCHZvRWKCfG9AlIaUUpRoFU1mAWgWR0CRGmlv60pmdX2UKGgGaAloD0MIBabTuo3GcUCUhpRSlGgVTb8CaBZHQJEbZQemvW91fZQoaAZoCWgPQwjhYG9iSPdsQJSGlFKUaBVN2wNoFkdAkRvNJOFg2XV9lChoBmgJaA9DCEsC1NSyRnNAlIaUUpRoFU01AWgWR0CRHJAqd6LPdX2UKGgGaAloD0MI11HVBBFycECUhpRSlGgVTa4CaBZHQJEd5LWZqmF1fZQoaAZoCWgPQwh1BHCzOBdwQJSGlFKUaBVNqQFoFkdAkR7CZ4Oc2HV9lChoBmgJaA9DCJLPK576X3FAlIaUUpRoFU16AWgWR0CRH7/xDst1dX2UKGgGaAloD0MIcQM+P4zYbUCUhpRSlGgVTU8BaBZHQJEiv8HfMwF1fZQoaAZoCWgPQwiXVdgMcIpuQJSGlFKUaBVNMQJoFkdAkSLJWq94/3V9lChoBmgJaA9DCF8n9WXp42pAlIaUUpRoFU0lAmgWR0CRJfJUo8ZDdX2UKGgGaAloD0MIE9TwLawrEkCUhpRSlGgVS+5oFkdAkSX8ujASF3V9lChoBmgJaA9DCATI0LEDz3FAlIaUUpRoFU1sAWgWR0CRJ8qUNayKdX2UKGgGaAloD0MIHEMAcGxqcUCUhpRSlGgVTTMCaBZHQJEoLSH/Lkl1fZQoaAZoCWgPQwhE+1jB7wttQJSGlFKUaBVNjAJoFkdAkSjgQlKK53V9lChoBmgJaA9DCG2pg7xeoHFAlIaUUpRoFU2sAWgWR0CRKTZccENfdX2UKGgGaAloD0MI8uzyrQ+nbUCUhpRSlGgVTcYBaBZHQJEqTW3BpHt1fZQoaAZoCWgPQwijyFpDKZBxQJSGlFKUaBVNNwNoFkdAkS1n2qT8pHV9lChoBmgJaA9DCPdbO1ESk1BAlIaUUpRoFUv4aBZHQJEtkabWmP51fZQoaAZoCWgPQwjOHJJa6LVxQJSGlFKUaBVNDAFoFkdAkS6EOAiFCnV9lChoBmgJaA9DCE3zjlM04nFAlIaUUpRoFU1wAWgWR0CRL81zQu27dX2UKGgGaAloD0MIG0mCcIXYcECUhpRSlGgVTfYBaBZHQJExRIoVmBh1fZQoaAZoCWgPQwiVumQcI3VxQJSGlFKUaBVNyAFoFkdAkTG//NqxknV9lChoBmgJaA9DCKIJFLGINnBAlIaUUpRoFU07AWgWR0CRM8OlwcYJdX2UKGgGaAloD0MIVtXL77QicECUhpRSlGgVTVICaBZHQJE0OrQw9JV1fZQoaAZoCWgPQwgPCd/7m8twQJSGlFKUaBVNJwFoFkdAkTYFZ5iVjnV9lChoBmgJaA9DCBA+lGhJFHJAlIaUUpRoFU2KAWgWR0CRNx/WUbDNdX2UKGgGaAloD0MI1GUxsbnZcUCUhpRSlGgVTWUBaBZHQJE4alP8AJd1fZQoaAZoCWgPQwi2gqYlVpBJQJSGlFKUaBVLrGgWR0CROKFRpDeCdX2UKGgGaAloD0MIwXKEDOQ2cECUhpRSlGgVTX4BaBZHQJE4zI8yN4t1fZQoaAZoCWgPQwiRYoBEUy1xQJSGlFKUaBVNmQJoFkdAkTlSJ0nw5XV9lChoBmgJaA9DCF37AnrhJ29AlIaUUpRoFU1XAWgWR0CRO/hXr+o+dX2UKGgGaAloD0MIHNE96xrOb0CUhpRSlGgVTegBaBZHQJE8piF0xM51fZQoaAZoCWgPQwgdAdws3o9xQJSGlFKUaBVNQAFoFkdAkUEmeUY8+3V9lChoBmgJaA9DCE5eZAJ+2XFAlIaUUpRoFU0dAmgWR0CRQVV1fVqfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ac7b81644724e52a065ce255589c8ba9245c05f51879485377e2882e4434855
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a9f44d670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a9f44d700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a9f44d790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a9f44d820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6a9f44d8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6a9f44d940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6a9f44d9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a9f44da60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6a9f44daf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a9f44db80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a9f44dc10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a9f44dca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6a9f4458d0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673601486781515278,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbl9LykTBy7eW0oO+AEbzzdGBM8629QvQAAgD8AAIA/gG+8vYFdjbwQK2W9Jm/0vPA8AD0RHwE+AAAAAAAAgD8zUuq8gvI4Pql1tb3HbXy+aKalvG78mbwAAAAAAAAAALMqAb3hEIa6qrOOu6MpujfVyn66mvYVtwAAgD8AAIA/pmq4vVK4uLn1SlC3tWU8skvH6Lr1znA2AACAPwAAgD8zGnW9SN+Duuin5bbt6+exi1lLOr5LBzYAAIA/AACAP2aoez1UQDA/od+jvSEIib4ekmG8YyVEvQAAAAAAAAAAMw6mvfZsUbo/UaY2LZ1ntuFuYrrHvY21AACAPwAAAAAAL4I8pKOxP0oRHT6hMWK+FLp8PGI99j0AAAAAAAAAAABKYrwPc1U92LFuPW00Nb6gZYw99Yv2vAAAAAAAAAAAQJa5vem3Dz6gWNI97jh5vu2H+zwQaD29AAAAAAAAAABmXj27Oqy8P15LBb0vpmY9HbyePNPfhD0AAAAAAAAAAM2dQb7IrzE/WkVXPdRxhL6H0UC94oLCPQAAAAAAAAAAZnMRvV1gKj7jw1K9cMVdvnepfr1Gp6q8AAAAAAAAAAAaaIm99nReug6fkbmaG3G0lgPMuRX9ozgAAIA/AACAP0A54r2Prj26+g6Tujc3dbZioU86LWqpOQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIusDlseaqYUCUhpRSlIwBbJRN6AOMAXSUR0CQdX93r2QGdX2UKGgGaAloD0MI4+E9BxZPcECUhpRSlGgVTS8DaBZHQJB1iXa8HwB1fZQoaAZoCWgPQwgb2gBsQItyQJSGlFKUaBVN6AJoFkdAkHibYbsF+3V9lChoBmgJaA9DCEmfVtEfQm5AlIaUUpRoFU0lAmgWR0CQefqM3qA0dX2UKGgGaAloD0MINsmP+BUWXkCUhpRSlGgVTegDaBZHQJB6oMrmQsB1fZQoaAZoCWgPQwiGkV7U7r9wQJSGlFKUaBVN1wJoFkdAkI2J40Mw13V9lChoBmgJaA9DCB1aZDtfbHBAlIaUUpRoFU2iAmgWR0CQjbPWQOnVdX2UKGgGaAloD0MIEQGHUKXQckCUhpRSlGgVTXkBaBZHQJCP/solUqB1fZQoaAZoCWgPQwgzxLEuLllxQJSGlFKUaBVNGwFoFkdAkJD9lqagEnV9lChoBmgJaA9DCBhCzvv/dExAlIaUUpRoFUvtaBZHQJCSHPcBU711fZQoaAZoCWgPQwgC02ndBuNkQJSGlFKUaBVN6ANoFkdAkJPdipeeF3V9lChoBmgJaA9DCAe3tYXni2ZAlIaUUpRoFU3oA2gWR0CQlR5D7ZWadX2UKGgGaAloD0MIBcJOseoOc0CUhpRSlGgVTRoCaBZHQJCYnybx3FF1fZQoaAZoCWgPQwiMvoI048JlQJSGlFKUaBVN6ANoFkdAkJuuC04R3HV9lChoBmgJaA9DCAJlU67w8W5AlIaUUpRoFU2xAmgWR0CQnItQsPJ8dX2UKGgGaAloD0MINgNckC05cECUhpRSlGgVTRoBaBZHQJCcxXnyNGV1fZQoaAZoCWgPQwjj4NIxZ/lxQJSGlFKUaBVNYwFoFkdAkJ0Hn2ZiNXV9lChoBmgJaA9DCP30nzW/4W5AlIaUUpRoFU0IAmgWR0CQn4k4WDYidX2UKGgGaAloD0MIB5eOOc8sSUCUhpRSlGgVTRMBaBZHQJChdMqSX+l1fZQoaAZoCWgPQwgm5IOeDf9wQJSGlFKUaBVNVgFoFkdAkKLEaya/h3V9lChoBmgJaA9DCHi4HRpWnHBAlIaUUpRoFU3HA2gWR0CQpTIAwPAgdX2UKGgGaAloD0MIRu7p6o7ja0CUhpRSlGgVTWACaBZHQJCpbd0q6OJ1fZQoaAZoCWgPQwg11CgkGT5uQJSGlFKUaBVNWgFoFkdAkKq1C5VfeHV9lChoBmgJaA9DCITVWMJah2xAlIaUUpRoFU2uAmgWR0CQrtTHbRF7dX2UKGgGaAloD0MIesToucVgcUCUhpRSlGgVTdECaBZHQJCxRYeT3Zh1fZQoaAZoCWgPQwhTspyEUnNuQJSGlFKUaBVNjwJoFkdAkLJhZlnRLXV9lChoBmgJaA9DCL4UHjR7ynBAlIaUUpRoFU2qAWgWR0CQssxubZvldX2UKGgGaAloD0MIOxkcJa+ISUCUhpRSlGgVS8poFkdAkLTPT5O8CnV9lChoBmgJaA9DCPUSY5l+mW1AlIaUUpRoFU3HAWgWR0CQtSYFqzqsdX2UKGgGaAloD0MInS6Lic2gZUCUhpRSlGgVTegDaBZHQJC4+2phnap1fZQoaAZoCWgPQwibr5KPXVFkQJSGlFKUaBVN6ANoFkdAkLyN5MURF3V9lChoBmgJaA9DCIMWEjC63W9AlIaUUpRoFU0+AWgWR0CQv1VuaWondX2UKGgGaAloD0MIcTlegeh0cECUhpRSlGgVTfoBaBZHQJC/3xOLzf91fZQoaAZoCWgPQwgZda29z2VxQJSGlFKUaBVNZgJoFkdAkNSKubI91XV9lChoBmgJaA9DCCgn2lVI8WxAlIaUUpRoFU1NAWgWR0CQ1Pxfv4M4dX2UKGgGaAloD0MIJ8Eb0uj6cECUhpRSlGgVTb4BaBZHQJDVFAIIF/x1fZQoaAZoCWgPQwgG81fInNFwQJSGlFKUaBVNZAJoFkdAkNWUzoEB83V9lChoBmgJaA9DCI8ZqIz/I21AlIaUUpRoFU2/AmgWR0CQ1uK7I1cddX2UKGgGaAloD0MIObh0zLl4cECUhpRSlGgVTe8CaBZHQJDW4c81XNl1fZQoaAZoCWgPQwh2ieqtgYpkQJSGlFKUaBVN6ANoFkdAkNpaPn0TUXV9lChoBmgJaA9DCOLkfociRnFAlIaUUpRoFU2PAWgWR0CQ2pzCDVYqdX2UKGgGaAloD0MIDY0ngjjJUUCUhpRSlGgVS9VoFkdAkN3I7FKkEnV9lChoBmgJaA9DCG8sKAxKDm9AlIaUUpRoFU3eA2gWR0CQ4Q9sabWmdX2UKGgGaAloD0MIU+i8xq7GbECUhpRSlGgVTUYBaBZHQJDhNtsN2DB1fZQoaAZoCWgPQwhsCfmg525wQJSGlFKUaBVNHgFoFkdAkOIdhd+ocnV9lChoBmgJaA9DCEWcTrLVO3NAlIaUUpRoFU06AWgWR0CQ4lgkTpPidX2UKGgGaAloD0MI9tIUAU7mcECUhpRSlGgVTWICaBZHQJDkEP1+RYB1fZQoaAZoCWgPQwjjOPBqua5xQJSGlFKUaBVNpAFoFkdAkOUV5nlGPXV9lChoBmgJaA9DCOARFapbn3FAlIaUUpRoFU3cAWgWR0CQ5SxptaZAdX2UKGgGaAloD0MIJ2a9GEqUcECUhpRSlGgVTdcCaBZHQJDnHoMa0hN1fZQoaAZoCWgPQwilLhnHiIVxQJSGlFKUaBVNdgFoFkdAkOdSn5zo2XV9lChoBmgJaA9DCKCkwALYanBAlIaUUpRoFU3mAWgWR0CQ6fpjtoi+dX2UKGgGaAloD0MIlwLS/odickCUhpRSlGgVTbYDaBZHQJDx8YMvysl1fZQoaAZoCWgPQwhDyHn/n/1wQJSGlFKUaBVN8AFoFkdAkPXLb5/LDHV9lChoBmgJaA9DCNwtyQH76XFAlIaUUpRoFU3AAWgWR0CQ9t96Tnq3dX2UKGgGaAloD0MIqfqVzgfycUCUhpRSlGgVTZgDaBZHQJD3e+wkgOl1fZQoaAZoCWgPQwgwmwDDMtNwQJSGlFKUaBVNqQFoFkdAkPk+UliSaHV9lChoBmgJaA9DCLVv7q8el2tAlIaUUpRoFU3YAWgWR0CQ+a2+PBBSdX2UKGgGaAloD0MIPE1mvO1jcUCUhpRSlGgVTRQCaBZHQJD7oaxX4j91fZQoaAZoCWgPQwi0dAXbCAxuQJSGlFKUaBVN0gFoFkdAkPyi1E3KjnV9lChoBmgJaA9DCK6BrRKso25AlIaUUpRoFU2kAWgWR0CQ/OYT0xubdX2UKGgGaAloD0MII4eIm5PicUCUhpRSlGgVTeQBaBZHQJD9aErXlKd1fZQoaAZoCWgPQwgVqwZhbitwQJSGlFKUaBVNMwNoFkdAkQGOtnwocHV9lChoBmgJaA9DCDttjQhG1W1AlIaUUpRoFU1rAWgWR0CRFqIxQBPsdX2UKGgGaAloD0MIgzRj0XTzcECUhpRSlGgVTcQDaBZHQJEWsOkLx7R1fZQoaAZoCWgPQwjMKmwGeN1xQJSGlFKUaBVN5AJoFkdAkRfvPC2tuHV9lChoBmgJaA9DCHZvRWKCfG9AlIaUUpRoFU1mAWgWR0CRGmlv60pmdX2UKGgGaAloD0MIBabTuo3GcUCUhpRSlGgVTb8CaBZHQJEbZQemvW91fZQoaAZoCWgPQwjhYG9iSPdsQJSGlFKUaBVN2wNoFkdAkRvNJOFg2XV9lChoBmgJaA9DCEsC1NSyRnNAlIaUUpRoFU01AWgWR0CRHJAqd6LPdX2UKGgGaAloD0MI11HVBBFycECUhpRSlGgVTa4CaBZHQJEd5LWZqmF1fZQoaAZoCWgPQwh1BHCzOBdwQJSGlFKUaBVNqQFoFkdAkR7CZ4Oc2HV9lChoBmgJaA9DCJLPK576X3FAlIaUUpRoFU16AWgWR0CRH7/xDst1dX2UKGgGaAloD0MIcQM+P4zYbUCUhpRSlGgVTU8BaBZHQJEiv8HfMwF1fZQoaAZoCWgPQwiXVdgMcIpuQJSGlFKUaBVNMQJoFkdAkSLJWq94/3V9lChoBmgJaA9DCF8n9WXp42pAlIaUUpRoFU0lAmgWR0CRJfJUo8ZDdX2UKGgGaAloD0MIE9TwLawrEkCUhpRSlGgVS+5oFkdAkSX8ujASF3V9lChoBmgJaA9DCATI0LEDz3FAlIaUUpRoFU1sAWgWR0CRJ8qUNayKdX2UKGgGaAloD0MIHEMAcGxqcUCUhpRSlGgVTTMCaBZHQJEoLSH/Lkl1fZQoaAZoCWgPQwhE+1jB7wttQJSGlFKUaBVNjAJoFkdAkSjgQlKK53V9lChoBmgJaA9DCG2pg7xeoHFAlIaUUpRoFU2sAWgWR0CRKTZccENfdX2UKGgGaAloD0MI8uzyrQ+nbUCUhpRSlGgVTcYBaBZHQJEqTW3BpHt1fZQoaAZoCWgPQwijyFpDKZBxQJSGlFKUaBVNNwNoFkdAkS1n2qT8pHV9lChoBmgJaA9DCPdbO1ESk1BAlIaUUpRoFUv4aBZHQJEtkabWmP51fZQoaAZoCWgPQwjOHJJa6LVxQJSGlFKUaBVNDAFoFkdAkS6EOAiFCnV9lChoBmgJaA9DCE3zjlM04nFAlIaUUpRoFU1wAWgWR0CRL81zQu27dX2UKGgGaAloD0MIG0mCcIXYcECUhpRSlGgVTfYBaBZHQJExRIoVmBh1fZQoaAZoCWgPQwiVumQcI3VxQJSGlFKUaBVNyAFoFkdAkTG//NqxknV9lChoBmgJaA9DCKIJFLGINnBAlIaUUpRoFU07AWgWR0CRM8OlwcYJdX2UKGgGaAloD0MIVtXL77QicECUhpRSlGgVTVICaBZHQJE0OrQw9JV1fZQoaAZoCWgPQwgPCd/7m8twQJSGlFKUaBVNJwFoFkdAkTYFZ5iVjnV9lChoBmgJaA9DCBA+lGhJFHJAlIaUUpRoFU2KAWgWR0CRNx/WUbDNdX2UKGgGaAloD0MI1GUxsbnZcUCUhpRSlGgVTWUBaBZHQJE4alP8AJd1fZQoaAZoCWgPQwi2gqYlVpBJQJSGlFKUaBVLrGgWR0CROKFRpDeCdX2UKGgGaAloD0MIwXKEDOQ2cECUhpRSlGgVTX4BaBZHQJE4zI8yN4t1fZQoaAZoCWgPQwiRYoBEUy1xQJSGlFKUaBVNmQJoFkdAkTlSJ0nw5XV9lChoBmgJaA9DCF37AnrhJ29AlIaUUpRoFU1XAWgWR0CRO/hXr+o+dX2UKGgGaAloD0MIHNE96xrOb0CUhpRSlGgVTegBaBZHQJE8piF0xM51fZQoaAZoCWgPQwgdAdws3o9xQJSGlFKUaBVNQAFoFkdAkUEmeUY8+3V9lChoBmgJaA9DCE5eZAJ+2XFAlIaUUpRoFU0dAmgWR0CRQVV1fVqfdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d5ae12afdbc463db0c4434db98ebd7259e50138b02601f84e0ee1096e388253
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc061ed9c0d68ef390f10d2dfdc155453ec7f89ddbdff8ebc5ab6b9e6271f19a
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (246 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.6712810950631, "std_reward": 21.018285953854097, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-13T09:43:32.461997"}