ppo-LunarLander-v2 / config.json
VinSnowski's picture
Upload PPO LunarLander-v2 trained agent
d66a810 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b69f3d4c940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b69f3d4c9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b69f3d4ca60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b69f3d4caf0>", "_build": "<function ActorCriticPolicy._build at 0x7b69f3d4cb80>", "forward": "<function ActorCriticPolicy.forward at 0x7b69f3d4cc10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b69f3d4cca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b69f3d4cd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7b69f3d4cdc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b69f3d4ce50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b69f3d4cee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b69f3d4cf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b69f3cefe00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721945949044857147, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZ9Tj6Bg6y8omGjPNJ7C7tHjBe+6CzbuwAAgD8AAIA/AMAWPT3bV7uuUz46w8aPPFb6jTxlxna9AACAPwAAgD+NncQ9FEqHuvABgLp3XGe1EbYzuw4ClTkAAIA/AAAAAPMBkj3h+KC6PtfrOhEjrTWIeM66y8AHugAAgD8AAIA/mm6rvED5uj+qmoK+aaY7PkZ+tDvz03m8AAAAAAAAAACauiW9ZO8SPqMyrj35yXS+vvx9PbCt0LwAAAAAAAAAADPD4LqF89K57j1FtPcbDa9fdpA7D4ukMwAAgD8AAIA/5u4VPuyVsbvyiYo1VqY6s/KIIb3Lw9G0AACAPwAAgD/m3h89j7YFukyUgzjiYQw0RAmtOwRKmrcAAIA/AACAP4DZAD524Da86GS9vM+1WDw5Irg94/BNvQAAgD8AAIA/Wu17PqoJiD+0jr8+ZvHjvitRwj7EH0g+AAAAAAAAAABATb09w8lBuioJMLpprCa1cF6qOHtYUDkAAIA/AAAAACYa7z0UgJm6/ApEPAnhbjXY1JK5sAtDugAAgD8AAIA/puuSvvvwSj/4xIq8w43Svn0vkL4uY04+AAAAAAAAAAAA/fo8AOCXPh/huD0PBZK+VOS+PMq5AD0AAAAAAAAAAGZEBb2tmJk/+82xvdIYAr9Plye9sVXMPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHaWPYFqzuMAWyUTU4BjAF0lEdAlsHq/Zdv9HV9lChoBkdARo/LeQ+2VmgHS8ZoCEdAlsPwb6xgRnV9lChoBkdAcd7dFOO802gHS/VoCEdAlsR7L+xW1nV9lChoBkdAccJ0gKWszWgHTVcBaAhHQJbGFvUBnzx1fZQoaAZHQHLOGn4wh4doB01IAWgIR0CWxhepXIU8dX2UKGgGR0ByGsmgJ1JUaAdNEgFoCEdAlseh99c8knV9lChoBkdAcZmagElme2gHTR8BaAhHQJbIJyyUs4F1fZQoaAZHQG7DEXUH6dloB00rAmgIR0CWyECoCMgmdX2UKGgGR0BygYSh8IAwaAdNBgFoCEdAlsj5rk8zRHV9lChoBkdAcWSv6CUX52gHTR8BaAhHQJbJTQD3dsV1fZQoaAZHQGAPHV5KODJoB03oA2gIR0CWyb8LKFIvdX2UKGgGR0Bx5xU4rBj4aAdNCAFoCEdAlsqtelbeM3V9lChoBkdAcpCJBgNPQGgHTQ4BaAhHQJbL7AuZkTZ1fZQoaAZHQEp6LBKtga5oB0vMaAhHQJbNcdsBQvZ1fZQoaAZHQG0mzS1E3KloB00CAWgIR0CWzXs0pEx7dX2UKGgGR0Bwo+S9ugpSaAdNJQFoCEdAls7P/R3NcHV9lChoBkdAUuLoxHoX9GgHS7VoCEdAls/AuZkTYnV9lChoBkdAcTovvBrN4mgHTV8BaAhHQJbQ7oxHoX91fZQoaAZHQG2e08FINExoB0v6aAhHQJbRv6JqIrR1fZQoaAZHQHEgzf3vhIhoB00cAWgIR0CW0eYLsruqdX2UKGgGR0BEEJk5IYm+aAdL7GgIR0CW0qLvTgEVdX2UKGgGR0Bu81+kP+XJaAdL7WgIR0CW07jlPrOadX2UKGgGR0ByYPOZ9d/saAdNSgFoCEdAltST/hl183V9lChoBkdAci/dupCKJmgHTRABaAhHQJbUnN/vv0B1fZQoaAZHQHAUnhS9/SZoB00pAWgIR0CW1NmHP/rCdX2UKGgGR0BUTR51Ng0CaAdLyGgIR0CW1Xku6ErYdX2UKGgGR0Bx8cWAPNFCaAdNOAFoCEdAltZv8hs673V9lChoBkdAc7aO7g88tGgHTUQBaAhHQJbXxt/FzdV1fZQoaAZHQHFYvkRzzVdoB0v6aAhHQJbYUHWz4UN1fZQoaAZHQFzHjUNKAaxoB03oA2gIR0CW2K/336AOdX2UKGgGR0BvvmDxsl9jaAdNNAFoCEdAltk8O9WZJHV9lChoBkdAcUNhkiD/VGgHTQ8BaAhHQJbZmr6tT1l1fZQoaAZHQHDYG/SH/LloB01iAWgIR0CW2aWykbgkdX2UKGgGR0Bt2jziCJ40aAdNGAFoCEdAltqLEpAlfXV9lChoBkdAcqDGetjkMmgHTQoBaAhHQJbaw5DJEIB1fZQoaAZHQHI4GRaHKwJoB0vkaAhHQJbbMSsbNr11fZQoaAZHQHMTVhPTG5toB007AWgIR0CW3DD0UXYUdX2UKGgGR0Bw6zjOs1baaAdNKwFoCEdAltx1F2FFlXV9lChoBkdAcVvSMLncL2gHTR4BaAhHQJbdvWf9P1t1fZQoaAZHQHEkBLXcxj9oB007AWgIR0CW3q9/SYw7dX2UKGgGR0Bxnccm0E5iaAdNPgFoCEdAlt8qlP8AJnV9lChoBkdAce/SzPa+OGgHTTIBaAhHQJbfghje9Bd1fZQoaAZHQEwrO8CgbqBoB0vqaAhHQJbfsAtFrmB1fZQoaAZHQG4bAHNX5nFoB00LAWgIR0CW4E/mDDjzdX2UKGgGR0BMQ6ttALRbaAdL2WgIR0CW4HyYG+sYdX2UKGgGR0BwWWpbUwztaAdNPAFoCEdAluC/VNHpbHV9lChoBkdAcIkhd+ocaWgHTQ0BaAhHQJbhESPEKmd1fZQoaAZHQG9wx6F/QSloB0vwaAhHQJbhFrrPdEd1fZQoaAZHQDXe0OVgQYloB0vZaAhHQJbhjCTEBKd1fZQoaAZHQGtq3L/0dzZoB00TAWgIR0CW4bJ+lTFVdX2UKGgGR0Bx+yarmyPdaAdNEQFoCEdAlvb1yFPBSHV9lChoBkdAcFUACnxaxGgHTRcBaAhHQJb3rfek56t1fZQoaAZHQGvu/EXLvCxoB00AAWgIR0CW9/C8OCoTdX2UKGgGR0BwPnYL9deIaAdNGwFoCEdAlvpvFefI0nV9lChoBkdAcNlouPFNtmgHTRsBaAhHQJb789KVY6p1fZQoaAZHQHELmJJoTPBoB00TAWgIR0CW/B8GcFyJdX2UKGgGR0Bupg6hg3LnaAdL7GgIR0CW/D0wJw85dX2UKGgGR0Bu9LER8MNMaAdNJgFoCEdAlv1+n62v0XV9lChoBkdAPgBmf5DZ12gHS+toCEdAlv37g0j1PHV9lChoBkdAbwV/QSi/PGgHTS8BaAhHQJb/Nj0+TvB1fZQoaAZHQHJRXLq2SdRoB00fAWgIR0CW/zdB0ITodX2UKGgGR0Bt4BeJHiFTaAdNFQFoCEdAlv9XJ5mh/XV9lChoBkdAcoz889wFT2gHTQABaAhHQJb/ZW6shgV1fZQoaAZHQHGuaWLP2PFoB00aAWgIR0CW/4K/mDDkdX2UKGgGR0Bw9ig9Net0aAdNHgFoCEdAlwLOI68xsXV9lChoBkdAcUrvJzT4L2gHS/9oCEdAlwL7J8v25HV9lChoBkdAcFXF5OafBmgHTf4BaAhHQJcDXFirksB1fZQoaAZHQHE3mzByjpNoB00XAWgIR0CXA5q/dqL1dX2UKGgGR0BvXYTmGM4taAdNAgFoCEdAlwZwLVnVXnV9lChoBkdAco8nDBMzuWgHS+VoCEdAlwj40/GEPHV9lChoBkdAcEXiB5HEuWgHS/JoCEdAlwmmoNutOnV9lChoBkdAcIkn7Hhjv2gHTUkBaAhHQJcKPCpFTeh1fZQoaAZHQG+zYp2ECeVoB00sAWgIR0CXClcu8K5TdX2UKGgGR0Bt4ewFC9h7aAdNKgFoCEdAlwq3LzPKMnV9lChoBkdAb/fbyH2ys2gHTRUBaAhHQJcKzXGwRoR1fZQoaAZHQHF3FN1yNn5oB01dAmgIR0CXCx2r4nF6dX2UKGgGR0BxcvnaFmFraAdNHAFoCEdAlwtHE61b7nV9lChoBkdAbCQRQrMC92gHTTsBaAhHQJcMMF+uvEF1fZQoaAZHQHK0QsbvPTpoB017AWgIR0CXDFVc2R7rdX2UKGgGR0BuxMkOZssQaAdNAgFoCEdAlw0A3974SHV9lChoBkdAcQg3ocJdB2gHTZwBaAhHQJcNSH8CPp91fZQoaAZHQHCiKQmu1WtoB00PAWgIR0CXDZFgUlAvdX2UKGgGR0BuZGqo60Y1aAdNMwFoCEdAlw7P642CNHV9lChoBkdAPnOi35N47mgHS9JoCEdAlxAOGGmDUXV9lChoBkdAcG0xQzk6tGgHTSIBaAhHQJcQeIuXeFd1fZQoaAZHQHCt4XKr7wdoB02WAWgIR0CXEYU/wAlwdX2UKGgGR0ByQaBvrGBGaAdL9WgIR0CXEtAiml67dX2UKGgGR0BwzEPMB6rvaAdNCwFoCEdAlxNgWSEDhnV9lChoBkdAbXYx+KCQLmgHS/hoCEdAlxN6jzqbB3V9lChoBkdAcIE96C17Y2gHTREBaAhHQJcT6teUpux1fZQoaAZHQHEo73K0UoNoB00nAWgIR0CXFDNDc/MXdX2UKGgGR0By1JAcDKYBaAdL8WgIR0CXFEIJZ4fPdX2UKGgGR0BseBPVNHpbaAdNFQFoCEdAlxRJaFEiMnV9lChoBkdAcSljynUDuGgHTUoBaAhHQJcUw2FWXC11fZQoaAZHQHFW+bNKRMhoB00zAWgIR0CXFude6ZpjdX2UKGgGR0Bxyv9zfaYeaAdNCgFoCEdAlxexzijtX3V9lChoBkdAcoLYtg8bJmgHTTEBaAhHQJcawadc0Lt1fZQoaAZHQG9Bu1fE4vNoB00aAWgIR0CXG7IkZ75VdX2UKGgGR0Bv6sBuGbkPaAdNogFoCEdAlxwvDLr5ZnV9lChoBkdAcfpqEvkBCGgHTRsBaAhHQJcdQBNmDlJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}