ViktorDo commited on
Commit
9b611ee
1 Parent(s): ab0c1eb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: DeBERTa-finetuned-ner-S800
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # DeBERTa-finetuned-ner-S800
19
+
20
+ This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0667
23
+ - Precision: 0.6659
24
+ - Recall: 0.7619
25
+ - F1: 0.7106
26
+ - Accuracy: 0.9781
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 3
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 55 | 0.0751 | 0.6379 | 0.6218 | 0.6298 | 0.9723 |
58
+ | No log | 2.0 | 110 | 0.0675 | 0.6869 | 0.7465 | 0.7154 | 0.9772 |
59
+ | No log | 3.0 | 165 | 0.0667 | 0.6659 | 0.7619 | 0.7106 | 0.9781 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.30.2
65
+ - Pytorch 2.0.1+cu118
66
+ - Datasets 2.12.0
67
+ - Tokenizers 0.13.3