Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.89 +/- 0.55
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:418dfa5b0c0602d5bdb4da2b580661bd84d6b76f32815a73df847be6c4f72348
|
3 |
+
size 108199
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb71e0d9940>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fb71e0db0c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674144463648897241,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYDmpPnh2jrvxfxI/YDmpPnh2jrvxfxI/YDmpPnh2jrvxfxI/YDmpPnh2jrvxfxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwfbcveXc1b64cL29bD3Ev3LUaT8akVc/dEaKv+gPxT7tDUI/PD1NP10Oz75IAIg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABgOak+eHaOu/F/Ej+WCh88vh0kuYGDRjxgOak+eHaOu/F/Ej+WCh88vh0kuYGDRjxgOak+eHaOu/F/Ej+WCh88vh0kuYGDRjxgOak+eHaOu/F/Ej+WCh88vh0kuYGDRjyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.33051586 -0.00434762 0.57226473]\n [ 0.33051586 -0.00434762 0.57226473]\n [ 0.33051586 -0.00434762 0.57226473]\n [ 0.33051586 -0.00434762 0.57226473]]",
|
60 |
+
"desired_goal": "[[-0.10789252 -0.41770092 -0.09250015]\n [-1.5331244 0.9133979 0.8420578 ]\n [-1.080275 0.38488698 0.758025 ]\n [ 0.8017156 -0.40440646 1.0625086 ]]",
|
61 |
+
"observation": "[[ 3.3051586e-01 -4.3476187e-03 5.7226473e-01 9.7071137e-03\n -1.5651339e-04 1.2116314e-02]\n [ 3.3051586e-01 -4.3476187e-03 5.7226473e-01 9.7071137e-03\n -1.5651339e-04 1.2116314e-02]\n [ 3.3051586e-01 -4.3476187e-03 5.7226473e-01 9.7071137e-03\n -1.5651339e-04 1.2116314e-02]\n [ 3.3051586e-01 -4.3476187e-03 5.7226473e-01 9.7071137e-03\n -1.5651339e-04 1.2116314e-02]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyrwhvKxTa73Gi3w+4FIIvlowbr1ipFI+inI8vfwp4LtTZNI8EDavvflZNjywvsY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.00987167 -0.05745284 0.24662694]\n [-0.13312864 -0.05815158 0.2057052 ]\n [-0.04600767 -0.00684094 0.0256826 ]\n [-0.08555233 0.01112985 0.0970434 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF50std7vBMCUhpRSlIwBbJRLMowBdJRHQKAqFCPZIxx1fZQoaAZoCWgPQwj1aRX9oTkGwJSGlFKUaBVLMmgWR0CgKeHLJSzgdX2UKGgGaAloD0MI+3d95qwPCcCUhpRSlGgVSzJoFkdAoCmvOhTOxHV9lChoBmgJaA9DCF/ObFfoQxDAlIaUUpRoFUsyaBZHQKApfO0svqV1fZQoaAZoCWgPQwhvu9Bcp1EQwJSGlFKUaBVLMmgWR0CgKspHRTjvdX2UKGgGaAloD0MIwk8cQL8PBsCUhpRSlGgVSzJoFkdAoCqX446wMnV9lChoBmgJaA9DCI8AbhYvVgnAlIaUUpRoFUsyaBZHQKAqZVrAP/d1fZQoaAZoCWgPQwi693DJcWcJwJSGlFKUaBVLMmgWR0CgKjLxI8QqdX2UKGgGaAloD0MIvCAiNe3iCMCUhpRSlGgVSzJoFkdAoCuBoZhrnHV9lChoBmgJaA9DCMTPfw9euwLAlIaUUpRoFUsyaBZHQKArTyksSTR1fZQoaAZoCWgPQwhTIoleRpEGwJSGlFKUaBVLMmgWR0CgKxyidrftdX2UKGgGaAloD0MIHGDmO/i5EcCUhpRSlGgVSzJoFkdAoCrqMxXXAnV9lChoBmgJaA9DCI8ZqIx/HwvAlIaUUpRoFUsyaBZHQKAsPIUahpR1fZQoaAZoCWgPQwjcZFQZxr0GwJSGlFKUaBVLMmgWR0CgLAoFmnO0dX2UKGgGaAloD0MIHhZqTfOOBsCUhpRSlGgVSzJoFkdAoCvXdbgTAXV9lChoBmgJaA9DCLA3MSQn0wDAlIaUUpRoFUsyaBZHQKArpR64Uex1fZQoaAZoCWgPQwiale1D3pICwJSGlFKUaBVLMmgWR0CgLPbILgGbdX2UKGgGaAloD0MIhJz3/3GiB8CUhpRSlGgVSzJoFkdAoCzEVnEl3XV9lChoBmgJaA9DCDxrt11oDgXAlIaUUpRoFUsyaBZHQKAskdPLxI91fZQoaAZoCWgPQwgJU5RL47cGwJSGlFKUaBVLMmgWR0CgLF+h4+r3dX2UKGgGaAloD0MIn+dPG9Up/r+UhpRSlGgVSzJoFkdAoC2to11nunV9lChoBmgJaA9DCF6ezhWlxAfAlIaUUpRoFUsyaBZHQKAtezUqhDh1fZQoaAZoCWgPQwht/fSfNf8MwJSGlFKUaBVLMmgWR0CgLUiih37ldX2UKGgGaAloD0MI5ueGpux0BsCUhpRSlGgVSzJoFkdAoC0WSB9TgnV9lChoBmgJaA9DCNgqweJwxgLAlIaUUpRoFUsyaBZHQKAuYjps41h1fZQoaAZoCWgPQwiCixU1mGYEwJSGlFKUaBVLMmgWR0CgLi/UvwmWdX2UKGgGaAloD0MI0uP3Nv0ZDMCUhpRSlGgVSzJoFkdAoC39QhwEQ3V9lChoBmgJaA9DCLHCLR9J6QXAlIaUUpRoFUsyaBZHQKAtytGus911fZQoaAZoCWgPQwgceouH97wIwJSGlFKUaBVLMmgWR0CgLx08mrsCdX2UKGgGaAloD0MITu53KAo0A8CUhpRSlGgVSzJoFkdAoC7qxC6YmnV9lChoBmgJaA9DCKwBSkONAv6/lIaUUpRoFUsyaBZHQKAuuDifg751fZQoaAZoCWgPQwhy3v/HCbMHwJSGlFKUaBVLMmgWR0CgLoXNC7btdX2UKGgGaAloD0MIGxGMg0unAsCUhpRSlGgVSzJoFkdAoC/UcuJ1q3V9lChoBmgJaA9DCFM9mX/0LQzAlIaUUpRoFUsyaBZHQKAvofU4JeF1fZQoaAZoCWgPQwj4UKIlj+cCwJSGlFKUaBVLMmgWR0CgL290aIepdX2UKGgGaAloD0MI7SsP0lMkDMCUhpRSlGgVSzJoFkdAoC89DIBBA3V9lChoBmgJaA9DCJASu7a3OwLAlIaUUpRoFUsyaBZHQKAwlBCUorp1fZQoaAZoCWgPQwjCwd7EkNwIwJSGlFKUaBVLMmgWR0CgMGGmUGFBdX2UKGgGaAloD0MIvobguIybCMCUhpRSlGgVSzJoFkdAoDAvT7VJ+XV9lChoBmgJaA9DCML7qlyofArAlIaUUpRoFUsyaBZHQKAv/PiT+vR1fZQoaAZoCWgPQwit+lxtxR4KwJSGlFKUaBVLMmgWR0CgMU9k8RthdX2UKGgGaAloD0MIUInrGFe8A8CUhpRSlGgVSzJoFkdAoDEdDx9XtHV9lChoBmgJaA9DCAGIu3oVmQbAlIaUUpRoFUsyaBZHQKAw6pLEk0J1fZQoaAZoCWgPQwgwZeCAli4JwJSGlFKUaBVLMmgWR0CgMLg4n4O+dX2UKGgGaAloD0MITmTmApenAcCUhpRSlGgVSzJoFkdAoDIOeUY8+3V9lChoBmgJaA9DCOYHrvIEogPAlIaUUpRoFUsyaBZHQKAx3Ackt291fZQoaAZoCWgPQwgEOL2L94MDwJSGlFKUaBVLMmgWR0CgMamLk0aZdX2UKGgGaAloD0MIAfp9/+YFC8CUhpRSlGgVSzJoFkdAoDF3VbzK93V9lChoBmgJaA9DCGh6ibFMvwPAlIaUUpRoFUsyaBZHQKAyxXwsoUl1fZQoaAZoCWgPQwhT6LzGLrERwJSGlFKUaBVLMmgWR0CgMpMKb8WLdX2UKGgGaAloD0MIAB+8dmmDEcCUhpRSlGgVSzJoFkdAoDJgiu+yq3V9lChoBmgJaA9DCEATYcPTqwTAlIaUUpRoFUsyaBZHQKAyLjYqXnh1fZQoaAZoCWgPQwizsRLzrMQFwJSGlFKUaBVLMmgWR0CgM3+iaiK0dX2UKGgGaAloD0MIYhQEj29PC8CUhpRSlGgVSzJoFkdAoDNNMVUMonV9lChoBmgJaA9DCOJ30y07BAbAlIaUUpRoFUsyaBZHQKAzGphnanJ1fZQoaAZoCWgPQwiNX3glyXMIwJSGlFKUaBVLMmgWR0CgMuhPKuB+dX2UKGgGaAloD0MIaRmp91TOC8CUhpRSlGgVSzJoFkdAoDQ46dUbUHV9lChoBmgJaA9DCDCca5ihURHAlIaUUpRoFUsyaBZHQKA0BnAZbY91fZQoaAZoCWgPQwhhxD4BFIMNwJSGlFKUaBVLMmgWR0CgM9PVurIYdX2UKGgGaAloD0MIAYkmUMSiBcCUhpRSlGgVSzJoFkdAoDOhdOZb6nV9lChoBmgJaA9DCKzijcwj3wLAlIaUUpRoFUsyaBZHQKA07Q/oq1B1fZQoaAZoCWgPQwhB9Q8iGdIPwJSGlFKUaBVLMmgWR0CgNLqjJuEVdX2UKGgGaAloD0MIipP7HYpCBMCUhpRSlGgVSzJoFkdAoDSIB91EE3V9lChoBmgJaA9DCP7Soj7J3Q7AlIaUUpRoFUsyaBZHQKA0VZi/fwZ1fZQoaAZoCWgPQwiRYoBEE8gDwJSGlFKUaBVLMmgWR0CgNaVxCIDYdX2UKGgGaAloD0MI0a+tn/7TDcCUhpRSlGgVSzJoFkdAoDVy9h7VrnV9lChoBmgJaA9DCFeyYyMQLwfAlIaUUpRoFUsyaBZHQKA1QGA08/51fZQoaAZoCWgPQwgwE0VI3S4HwJSGlFKUaBVLMmgWR0CgNQ3tShrWdX2UKGgGaAloD0MI4QhSKXbEEsCUhpRSlGgVSzJoFkdAoDZb2SMcZXV9lChoBmgJaA9DCLw+c9anPArAlIaUUpRoFUsyaBZHQKA2KW1twaR1fZQoaAZoCWgPQwj0T3CxoiYJwJSGlFKUaBVLMmgWR0CgNfbaAWi2dX2UKGgGaAloD0MIMGZLVkWYAsCUhpRSlGgVSzJoFkdAoDXEdzXBg3V9lChoBmgJaA9DCLEUyVcC6QTAlIaUUpRoFUsyaBZHQKA3Ex7iQ1d1fZQoaAZoCWgPQwh2ptB5jf0NwJSGlFKUaBVLMmgWR0CgNuC2DxsmdX2UKGgGaAloD0MIJGQgzy5/A8CUhpRSlGgVSzJoFkdAoDauJWNm2HV9lChoBmgJaA9DCCCzs+idSgPAlIaUUpRoFUsyaBZHQKA2e7pV0cR1fZQoaAZoCWgPQwgvT+eKUkIEwJSGlFKUaBVLMmgWR0CgN8t7BwdbdX2UKGgGaAloD0MIzqW4quybBsCUhpRSlGgVSzJoFkdAoDeZH7P6bnV9lChoBmgJaA9DCG3F/rJ7sgPAlIaUUpRoFUsyaBZHQKA3Zo6CDmN1fZQoaAZoCWgPQwhfB84ZUfoIwJSGlFKUaBVLMmgWR0CgNzQmu1WsdX2UKGgGaAloD0MIqTKMu0EUAsCUhpRSlGgVSzJoFkdAoDiCubI91XV9lChoBmgJaA9DCIbLKmwGmALAlIaUUpRoFUsyaBZHQKA4UE384xV1fZQoaAZoCWgPQwiKzFzg8lj/v5SGlFKUaBVLMmgWR0CgOB3BP9DQdX2UKGgGaAloD0MIGFxzR/8bEMCUhpRSlGgVSzJoFkdAoDfrVQQ+U3V9lChoBmgJaA9DCPTeGAKAQwDAlIaUUpRoFUsyaBZHQKA5PHtF8Xx1fZQoaAZoCWgPQwg82c2MfpQDwJSGlFKUaBVLMmgWR0CgOQoS13MZdX2UKGgGaAloD0MIOj5anDFMAcCUhpRSlGgVSzJoFkdAoDjXiDM/yHV9lChoBmgJaA9DCOcBLPLrZwPAlIaUUpRoFUsyaBZHQKA4pRtP5591fZQoaAZoCWgPQwgtIorJG2D8v5SGlFKUaBVLMmgWR0CgOfPznRsudX2UKGgGaAloD0MIg/bq46HvEcCUhpRSlGgVSzJoFkdAoDnBdld1MnV9lChoBmgJaA9DCBaHM7+agwjAlIaUUpRoFUsyaBZHQKA5jtv4ubt1fZQoaAZoCWgPQwhoWIy61r4BwJSGlFKUaBVLMmgWR0CgOVx+z+m4dX2UKGgGaAloD0MI8YCyKVe4A8CUhpRSlGgVSzJoFkdAoDqrbpNbknV9lChoBmgJaA9DCFnfwORGUQLAlIaUUpRoFUsyaBZHQKA6ePZIxxl1fZQoaAZoCWgPQwhVM2spIO0MwJSGlFKUaBVLMmgWR0CgOkZjx0+1dX2UKGgGaAloD0MIw33k1qT7B8CUhpRSlGgVSzJoFkdAoDoT/MnqmnV9lChoBmgJaA9DCJmghm9hvQfAlIaUUpRoFUsyaBZHQKA7YlenhsJ1fZQoaAZoCWgPQwidLLXeb/T9v5SGlFKUaBVLMmgWR0CgOy/yf+S9dX2UKGgGaAloD0MIaCWt+IaiBsCUhpRSlGgVSzJoFkdAoDr9kauOj3V9lChoBmgJaA9DCBqGj4gpMQHAlIaUUpRoFUsyaBZHQKA6yysS00F1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53e5a29cf058e790c3eb110361ed1e6d9d7fb1fd478fa6b061810ccb68355cda
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d3888be1f45d7f738f589ec8463580cb80653a30360de58e7afd8dfac4e641d
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.13.0-41-generic-x86_64-with-glibc2.17 # 46~20.04.1-Ubuntu SMP Wed Apr 20 13:16:21 UTC 2022
|
2 |
+
- Python: 3.8.13
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.0
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb71e0d9940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb71e0db0c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674144463648897241, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYDmpPnh2jrvxfxI/YDmpPnh2jrvxfxI/YDmpPnh2jrvxfxI/YDmpPnh2jrvxfxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwfbcveXc1b64cL29bD3Ev3LUaT8akVc/dEaKv+gPxT7tDUI/PD1NP10Oz75IAIg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABgOak+eHaOu/F/Ej+WCh88vh0kuYGDRjxgOak+eHaOu/F/Ej+WCh88vh0kuYGDRjxgOak+eHaOu/F/Ej+WCh88vh0kuYGDRjxgOak+eHaOu/F/Ej+WCh88vh0kuYGDRjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.33051586 -0.00434762 0.57226473]\n [ 0.33051586 -0.00434762 0.57226473]\n [ 0.33051586 -0.00434762 0.57226473]\n [ 0.33051586 -0.00434762 0.57226473]]", "desired_goal": "[[-0.10789252 -0.41770092 -0.09250015]\n [-1.5331244 0.9133979 0.8420578 ]\n [-1.080275 0.38488698 0.758025 ]\n [ 0.8017156 -0.40440646 1.0625086 ]]", "observation": "[[ 3.3051586e-01 -4.3476187e-03 5.7226473e-01 9.7071137e-03\n -1.5651339e-04 1.2116314e-02]\n [ 3.3051586e-01 -4.3476187e-03 5.7226473e-01 9.7071137e-03\n -1.5651339e-04 1.2116314e-02]\n [ 3.3051586e-01 -4.3476187e-03 5.7226473e-01 9.7071137e-03\n -1.5651339e-04 1.2116314e-02]\n [ 3.3051586e-01 -4.3476187e-03 5.7226473e-01 9.7071137e-03\n -1.5651339e-04 1.2116314e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyrwhvKxTa73Gi3w+4FIIvlowbr1ipFI+inI8vfwp4LtTZNI8EDavvflZNjywvsY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00987167 -0.05745284 0.24662694]\n [-0.13312864 -0.05815158 0.2057052 ]\n [-0.04600767 -0.00684094 0.0256826 ]\n [-0.08555233 0.01112985 0.0970434 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF50std7vBMCUhpRSlIwBbJRLMowBdJRHQKAqFCPZIxx1fZQoaAZoCWgPQwj1aRX9oTkGwJSGlFKUaBVLMmgWR0CgKeHLJSzgdX2UKGgGaAloD0MI+3d95qwPCcCUhpRSlGgVSzJoFkdAoCmvOhTOxHV9lChoBmgJaA9DCF/ObFfoQxDAlIaUUpRoFUsyaBZHQKApfO0svqV1fZQoaAZoCWgPQwhvu9Bcp1EQwJSGlFKUaBVLMmgWR0CgKspHRTjvdX2UKGgGaAloD0MIwk8cQL8PBsCUhpRSlGgVSzJoFkdAoCqX446wMnV9lChoBmgJaA9DCI8AbhYvVgnAlIaUUpRoFUsyaBZHQKAqZVrAP/d1fZQoaAZoCWgPQwi693DJcWcJwJSGlFKUaBVLMmgWR0CgKjLxI8QqdX2UKGgGaAloD0MIvCAiNe3iCMCUhpRSlGgVSzJoFkdAoCuBoZhrnHV9lChoBmgJaA9DCMTPfw9euwLAlIaUUpRoFUsyaBZHQKArTyksSTR1fZQoaAZoCWgPQwhTIoleRpEGwJSGlFKUaBVLMmgWR0CgKxyidrftdX2UKGgGaAloD0MIHGDmO/i5EcCUhpRSlGgVSzJoFkdAoCrqMxXXAnV9lChoBmgJaA9DCI8ZqIx/HwvAlIaUUpRoFUsyaBZHQKAsPIUahpR1fZQoaAZoCWgPQwjcZFQZxr0GwJSGlFKUaBVLMmgWR0CgLAoFmnO0dX2UKGgGaAloD0MIHhZqTfOOBsCUhpRSlGgVSzJoFkdAoCvXdbgTAXV9lChoBmgJaA9DCLA3MSQn0wDAlIaUUpRoFUsyaBZHQKArpR64Uex1fZQoaAZoCWgPQwiale1D3pICwJSGlFKUaBVLMmgWR0CgLPbILgGbdX2UKGgGaAloD0MIhJz3/3GiB8CUhpRSlGgVSzJoFkdAoCzEVnEl3XV9lChoBmgJaA9DCDxrt11oDgXAlIaUUpRoFUsyaBZHQKAskdPLxI91fZQoaAZoCWgPQwgJU5RL47cGwJSGlFKUaBVLMmgWR0CgLF+h4+r3dX2UKGgGaAloD0MIn+dPG9Up/r+UhpRSlGgVSzJoFkdAoC2to11nunV9lChoBmgJaA9DCF6ezhWlxAfAlIaUUpRoFUsyaBZHQKAtezUqhDh1fZQoaAZoCWgPQwht/fSfNf8MwJSGlFKUaBVLMmgWR0CgLUiih37ldX2UKGgGaAloD0MI5ueGpux0BsCUhpRSlGgVSzJoFkdAoC0WSB9TgnV9lChoBmgJaA9DCNgqweJwxgLAlIaUUpRoFUsyaBZHQKAuYjps41h1fZQoaAZoCWgPQwiCixU1mGYEwJSGlFKUaBVLMmgWR0CgLi/UvwmWdX2UKGgGaAloD0MI0uP3Nv0ZDMCUhpRSlGgVSzJoFkdAoC39QhwEQ3V9lChoBmgJaA9DCLHCLR9J6QXAlIaUUpRoFUsyaBZHQKAtytGus911fZQoaAZoCWgPQwgceouH97wIwJSGlFKUaBVLMmgWR0CgLx08mrsCdX2UKGgGaAloD0MITu53KAo0A8CUhpRSlGgVSzJoFkdAoC7qxC6YmnV9lChoBmgJaA9DCKwBSkONAv6/lIaUUpRoFUsyaBZHQKAuuDifg751fZQoaAZoCWgPQwhy3v/HCbMHwJSGlFKUaBVLMmgWR0CgLoXNC7btdX2UKGgGaAloD0MIGxGMg0unAsCUhpRSlGgVSzJoFkdAoC/UcuJ1q3V9lChoBmgJaA9DCFM9mX/0LQzAlIaUUpRoFUsyaBZHQKAvofU4JeF1fZQoaAZoCWgPQwj4UKIlj+cCwJSGlFKUaBVLMmgWR0CgL290aIepdX2UKGgGaAloD0MI7SsP0lMkDMCUhpRSlGgVSzJoFkdAoC89DIBBA3V9lChoBmgJaA9DCJASu7a3OwLAlIaUUpRoFUsyaBZHQKAwlBCUorp1fZQoaAZoCWgPQwjCwd7EkNwIwJSGlFKUaBVLMmgWR0CgMGGmUGFBdX2UKGgGaAloD0MIvobguIybCMCUhpRSlGgVSzJoFkdAoDAvT7VJ+XV9lChoBmgJaA9DCML7qlyofArAlIaUUpRoFUsyaBZHQKAv/PiT+vR1fZQoaAZoCWgPQwit+lxtxR4KwJSGlFKUaBVLMmgWR0CgMU9k8RthdX2UKGgGaAloD0MIUInrGFe8A8CUhpRSlGgVSzJoFkdAoDEdDx9XtHV9lChoBmgJaA9DCAGIu3oVmQbAlIaUUpRoFUsyaBZHQKAw6pLEk0J1fZQoaAZoCWgPQwgwZeCAli4JwJSGlFKUaBVLMmgWR0CgMLg4n4O+dX2UKGgGaAloD0MITmTmApenAcCUhpRSlGgVSzJoFkdAoDIOeUY8+3V9lChoBmgJaA9DCOYHrvIEogPAlIaUUpRoFUsyaBZHQKAx3Ackt291fZQoaAZoCWgPQwgEOL2L94MDwJSGlFKUaBVLMmgWR0CgMamLk0aZdX2UKGgGaAloD0MIAfp9/+YFC8CUhpRSlGgVSzJoFkdAoDF3VbzK93V9lChoBmgJaA9DCGh6ibFMvwPAlIaUUpRoFUsyaBZHQKAyxXwsoUl1fZQoaAZoCWgPQwhT6LzGLrERwJSGlFKUaBVLMmgWR0CgMpMKb8WLdX2UKGgGaAloD0MIAB+8dmmDEcCUhpRSlGgVSzJoFkdAoDJgiu+yq3V9lChoBmgJaA9DCEATYcPTqwTAlIaUUpRoFUsyaBZHQKAyLjYqXnh1fZQoaAZoCWgPQwizsRLzrMQFwJSGlFKUaBVLMmgWR0CgM3+iaiK0dX2UKGgGaAloD0MIYhQEj29PC8CUhpRSlGgVSzJoFkdAoDNNMVUMonV9lChoBmgJaA9DCOJ30y07BAbAlIaUUpRoFUsyaBZHQKAzGphnanJ1fZQoaAZoCWgPQwiNX3glyXMIwJSGlFKUaBVLMmgWR0CgMuhPKuB+dX2UKGgGaAloD0MIaRmp91TOC8CUhpRSlGgVSzJoFkdAoDQ46dUbUHV9lChoBmgJaA9DCDCca5ihURHAlIaUUpRoFUsyaBZHQKA0BnAZbY91fZQoaAZoCWgPQwhhxD4BFIMNwJSGlFKUaBVLMmgWR0CgM9PVurIYdX2UKGgGaAloD0MIAYkmUMSiBcCUhpRSlGgVSzJoFkdAoDOhdOZb6nV9lChoBmgJaA9DCKzijcwj3wLAlIaUUpRoFUsyaBZHQKA07Q/oq1B1fZQoaAZoCWgPQwhB9Q8iGdIPwJSGlFKUaBVLMmgWR0CgNLqjJuEVdX2UKGgGaAloD0MIipP7HYpCBMCUhpRSlGgVSzJoFkdAoDSIB91EE3V9lChoBmgJaA9DCP7Soj7J3Q7AlIaUUpRoFUsyaBZHQKA0VZi/fwZ1fZQoaAZoCWgPQwiRYoBEE8gDwJSGlFKUaBVLMmgWR0CgNaVxCIDYdX2UKGgGaAloD0MI0a+tn/7TDcCUhpRSlGgVSzJoFkdAoDVy9h7VrnV9lChoBmgJaA9DCFeyYyMQLwfAlIaUUpRoFUsyaBZHQKA1QGA08/51fZQoaAZoCWgPQwgwE0VI3S4HwJSGlFKUaBVLMmgWR0CgNQ3tShrWdX2UKGgGaAloD0MI4QhSKXbEEsCUhpRSlGgVSzJoFkdAoDZb2SMcZXV9lChoBmgJaA9DCLw+c9anPArAlIaUUpRoFUsyaBZHQKA2KW1twaR1fZQoaAZoCWgPQwj0T3CxoiYJwJSGlFKUaBVLMmgWR0CgNfbaAWi2dX2UKGgGaAloD0MIMGZLVkWYAsCUhpRSlGgVSzJoFkdAoDXEdzXBg3V9lChoBmgJaA9DCLEUyVcC6QTAlIaUUpRoFUsyaBZHQKA3Ex7iQ1d1fZQoaAZoCWgPQwh2ptB5jf0NwJSGlFKUaBVLMmgWR0CgNuC2DxsmdX2UKGgGaAloD0MIJGQgzy5/A8CUhpRSlGgVSzJoFkdAoDauJWNm2HV9lChoBmgJaA9DCCCzs+idSgPAlIaUUpRoFUsyaBZHQKA2e7pV0cR1fZQoaAZoCWgPQwgvT+eKUkIEwJSGlFKUaBVLMmgWR0CgN8t7BwdbdX2UKGgGaAloD0MIzqW4quybBsCUhpRSlGgVSzJoFkdAoDeZH7P6bnV9lChoBmgJaA9DCG3F/rJ7sgPAlIaUUpRoFUsyaBZHQKA3Zo6CDmN1fZQoaAZoCWgPQwhfB84ZUfoIwJSGlFKUaBVLMmgWR0CgNzQmu1WsdX2UKGgGaAloD0MIqTKMu0EUAsCUhpRSlGgVSzJoFkdAoDiCubI91XV9lChoBmgJaA9DCIbLKmwGmALAlIaUUpRoFUsyaBZHQKA4UE384xV1fZQoaAZoCWgPQwiKzFzg8lj/v5SGlFKUaBVLMmgWR0CgOB3BP9DQdX2UKGgGaAloD0MIGFxzR/8bEMCUhpRSlGgVSzJoFkdAoDfrVQQ+U3V9lChoBmgJaA9DCPTeGAKAQwDAlIaUUpRoFUsyaBZHQKA5PHtF8Xx1fZQoaAZoCWgPQwg82c2MfpQDwJSGlFKUaBVLMmgWR0CgOQoS13MZdX2UKGgGaAloD0MIOj5anDFMAcCUhpRSlGgVSzJoFkdAoDjXiDM/yHV9lChoBmgJaA9DCOcBLPLrZwPAlIaUUpRoFUsyaBZHQKA4pRtP5591fZQoaAZoCWgPQwgtIorJG2D8v5SGlFKUaBVLMmgWR0CgOfPznRsudX2UKGgGaAloD0MIg/bq46HvEcCUhpRSlGgVSzJoFkdAoDnBdld1MnV9lChoBmgJaA9DCBaHM7+agwjAlIaUUpRoFUsyaBZHQKA5jtv4ubt1fZQoaAZoCWgPQwhoWIy61r4BwJSGlFKUaBVLMmgWR0CgOVx+z+m4dX2UKGgGaAloD0MI8YCyKVe4A8CUhpRSlGgVSzJoFkdAoDqrbpNbknV9lChoBmgJaA9DCFnfwORGUQLAlIaUUpRoFUsyaBZHQKA6ePZIxxl1fZQoaAZoCWgPQwhVM2spIO0MwJSGlFKUaBVLMmgWR0CgOkZjx0+1dX2UKGgGaAloD0MIw33k1qT7B8CUhpRSlGgVSzJoFkdAoDoT/MnqmnV9lChoBmgJaA9DCJmghm9hvQfAlIaUUpRoFUsyaBZHQKA7YlenhsJ1fZQoaAZoCWgPQwidLLXeb/T9v5SGlFKUaBVLMmgWR0CgOy/yf+S9dX2UKGgGaAloD0MIaCWt+IaiBsCUhpRSlGgVSzJoFkdAoDr9kauOj3V9lChoBmgJaA9DCBqGj4gpMQHAlIaUUpRoFUsyaBZHQKA6yysS00F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.13.0-41-generic-x86_64-with-glibc2.17 # 46~20.04.1-Ubuntu SMP Wed Apr 20 13:16:21 UTC 2022", "Python": "3.8.13", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.0", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (786 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.887494320049882, "std_reward": 0.5470259680449242, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T11:42:23.203687"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b764e7599cdcd6bfdfce886ab8641e45e6aaaf246c4bed630092c411de22020f
|
3 |
+
size 3212
|