Update README.md
Browse files
README.md
CHANGED
|
@@ -182,4 +182,179 @@ Positive references to related work:
|
|
| 182 |
|
| 183 |
* Cerebras — [https://arxiv.org/abs/2510.13999](https://arxiv.org/abs/2510.13999)
|
| 184 |
* Alibaba Cloud Computing — [https://arxiv.org/html/2511.01354v1](https://arxiv.org/html/2511.01354v1)
|
| 185 |
-
* QLoRA — [https://arxiv.org/abs/2307.02973](https://arxiv.org/abs/2307.02973)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
* Cerebras — [https://arxiv.org/abs/2510.13999](https://arxiv.org/abs/2510.13999)
|
| 184 |
* Alibaba Cloud Computing — [https://arxiv.org/html/2511.01354v1](https://arxiv.org/html/2511.01354v1)
|
| 185 |
+
* QLoRA — [https://arxiv.org/abs/2307.02973](https://arxiv.org/abs/2307.02973)# THRIFT — Targeted Reduction for Inference and Fine-Tuning
|
| 186 |
+
|
| 187 |
+
A performance-optimized variant of the base model that delivers faster responses and lower memory usage while preserving quality for everyday tasks, developed by VibeStud.io.
|
| 188 |
+
|
| 189 |
+
## TLDR
|
| 190 |
+
|
| 191 |
+
We, over-caffinated researchers at VibeStud.io wanted to create a 50% pruned version of the SOTA MiniMax M2 that is best suited for local/air-gapped coding. This version we achieved \~25%. A 50% pruned version is under development while a not so sucky team of ours is working on a 50% pruned version of Kimi K2 Thinking. Check back later, cheers\!
|
| 192 |
+
|
| 193 |
+
## Why it’s useful
|
| 194 |
+
|
| 195 |
+
* **Lower latency:** Snappier responses for interactive apps and chatbots.
|
| 196 |
+
* **Smaller memory footprint:** Runs on cheaper GPUs or with fewer resources per replica.
|
| 197 |
+
* **Higher throughput:** Serve more concurrent users at the same cost.
|
| 198 |
+
* **Deployment-friendly:** Drop-in replacement for the base model in most inference stacks.
|
| 199 |
+
* **Adaptable:** Supports light fine-tuning to match your domain and style guidelines.
|
| 200 |
+
|
| 201 |
+
## Intended use
|
| 202 |
+
|
| 203 |
+
* General chat and coding assistance
|
| 204 |
+
* Enterprise assistants with strict latency/VRAM budgets
|
| 205 |
+
* Batch or realtime serving in cloud and on-prem environments
|
| 206 |
+
* Edge or cost-sensitive deployments where efficiency matters
|
| 207 |
+
|
| 208 |
+
## When to use it
|
| 209 |
+
|
| 210 |
+
* You’re constrained by GPU memory or need shorter response times
|
| 211 |
+
* You want to increase QPS without scaling infrastructure
|
| 212 |
+
* You need a model that is “good enough” for most tasks at a better cost profile
|
| 213 |
+
|
| 214 |
+
---
|
| 215 |
+
|
| 216 |
+
# Model Comparison Report
|
| 217 |
+
|
| 218 |
+
**Models Under Evaluation**
|
| 219 |
+
|
| 220 |
+
| Model | Type |
|
| 221 |
+
| :---- | :---- |
|
| 222 |
+
| ModelCloud/MiniMax-M2-BF16 | Base Model |
|
| 223 |
+
| VibeStudio/MiniMax-M2-THRIFT | Compressed/Optimized |
|
| 224 |
+
|
| 225 |
+
**Evaluation Date: November 7, 2025**
|
| 226 |
+
|
| 227 |
+
## 📊 Results Comparison
|
| 228 |
+
|
| 229 |
+
### 1\) Multiple Choice Q\&A (lm-eval)
|
| 230 |
+
|
| 231 |
+
**Overall MMLU Performance**
|
| 232 |
+
|
| 233 |
+
| Model | MMLU Overall | Humanities | STEM | Social Sciences | Other |
|
| 234 |
+
| :---- | ----: | ----: | ----: | ----: | ----: |
|
| 235 |
+
| MiniMax-M2-BF16 | 83.16% | 77.45% | 80.91% | 90.02% | 87.29% |
|
| 236 |
+
| MiniMax-M2-THRIFT | 77.72% | 70.14% | 77.61% | 86.84% | 80.27% |
|
| 237 |
+
| **Δ (Difference)** | **\-5.44%** | **\-7.31%** | **\-3.30%** | **\-3.18%** | **\-7.02%** |
|
| 238 |
+
|
| 239 |
+
**Individual Task Performance**
|
| 240 |
+
|
| 241 |
+
| Task | BF16 (Base) | THRIFT-BF16 | Difference |
|
| 242 |
+
| :---- | ----: | ----: | ----: |
|
| 243 |
+
| arc\_challenge | 73.21% | 61.01% | \-12.20% ⬇️ |
|
| 244 |
+
| arc\_easy | 88.30% | 83.08% | \-5.22% ⬇️ |
|
| 245 |
+
| boolq | 87.95% | 84.95% | \-3.00% ⬇️ |
|
| 246 |
+
| hellaswag | 83.00% | 77.09% | \-5.91% ⬇️ |
|
| 247 |
+
| mmlu | 83.16% | 77.72% | \-5.44% ⬇️ |
|
| 248 |
+
| openbookqa | 48.60% | 43.00% | \-5.60% ⬇️ |
|
| 249 |
+
| rte | 75.45% | 80.14% | **\+4.69% ⬆️** |
|
| 250 |
+
| winogrande | 76.48% | 74.90% | \-1.58% ⬇️ |
|
| 251 |
+
|
| 252 |
+
**Average Accuracy Drop: \-4.28%**
|
| 253 |
+
|
| 254 |
+
### 2\) Code Generation (EvalPlus)
|
| 255 |
+
|
| 256 |
+
**MBPP Results**
|
| 257 |
+
|
| 258 |
+
| Model | MBPP (base) | MBPP+ (extended) |
|
| 259 |
+
| :---- | ----: | ----: |
|
| 260 |
+
| MiniMax-M2-BF16 | 73.8% | 64.0% |
|
| 261 |
+
| MiniMax-M2-THRIFT | 🔄 Coming Soon | 🔄 Coming Soon |
|
| 262 |
+
|
| 263 |
+
**HumanEval Results**
|
| 264 |
+
|
| 265 |
+
| Model | HumanEval (base) | HumanEval+ (extended) |
|
| 266 |
+
| :---- | ----: | ----: |
|
| 267 |
+
| MiniMax-M2-BF16 | ✅ Complete | ✅ Complete |
|
| 268 |
+
| MiniMax-M2-THRIFT | 🔄 Coming Soon | 🔄 Coming Soon |
|
| 269 |
+
|
| 270 |
+
### 3\) Math Benchmarks
|
| 271 |
+
|
| 272 |
+
**GSM8K Results**
|
| 273 |
+
|
| 274 |
+
| Model | Accuracy | Problems |
|
| 275 |
+
| :---- | ----: | ----: |
|
| 276 |
+
| MiniMax-M2-BF16 | 92.72% | 1,319 |
|
| 277 |
+
| MiniMax-M2-THRIFT | 🔄 Coming Soon | 1,319 |
|
| 278 |
+
|
| 279 |
+
**MATH-500 Results**
|
| 280 |
+
|
| 281 |
+
| Model | Overall | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |
|
| 282 |
+
| :---- | ----: | ----: | ----: | ----: | ----: | ----: |
|
| 283 |
+
| MiniMax-M2-BF16 | 87.2% | 90.7% | 95.56% | 82.86% | 85.16% | 85.82% |
|
| 284 |
+
| MiniMax-M2-THRIFT | 🔄 Coming Soon | 🔄 | 🔄 | 🔄 | 🔄 | 🔄 |
|
| 285 |
+
|
| 286 |
+
### 4\) LiveCodeBench (Live Coding Problems)
|
| 287 |
+
|
| 288 |
+
| Model | pass@1 | Problems | Status |
|
| 289 |
+
| :---- | ----: | ----: | :---- |
|
| 290 |
+
| **MiniMax-M2-BF16** | **35.71%** | 182 | ✅ Complete |
|
| 291 |
+
| **MiniMax-M2-THRIFT** | 🔄 Coming Soon | 182 | ⏳ Not Started Yet |
|
| 292 |
+
|
| 293 |
+
---
|
| 294 |
+
|
| 295 |
+
## 📈 Analysis (Preliminary)
|
| 296 |
+
|
| 297 |
+
### Key Findings
|
| 298 |
+
|
| 299 |
+
**MMLU Performance Drop**
|
| 300 |
+
|
| 301 |
+
* THRIFT-BF16 shows **\-5.44%** overall MMLU drop
|
| 302 |
+
* Largest drop: **arc\_challenge (-12.20%)**
|
| 303 |
+
* Smallest drop: **winogrande (-1.58%)**
|
| 304 |
+
* **RTE improved by \+4.69%** 🎉
|
| 305 |
+
|
| 306 |
+
**Subject-Specific Performance**
|
| 307 |
+
|
| 308 |
+
* Best preservation: **Social Sciences (-3.18%)**
|
| 309 |
+
* Most degraded: **Other (-7.02%)**
|
| 310 |
+
* STEM: **Moderate drop (-3.30%)**
|
| 311 |
+
|
| 312 |
+
**Compression Trade-off**
|
| 313 |
+
|
| 314 |
+
* THRIFT-BF16 (compressed) vs BF16 (base)
|
| 315 |
+
* Average accuracy loss: **\~4–5%**
|
| 316 |
+
* Expected for compressed/quantized models
|
| 317 |
+
|
| 318 |
+
**MMLU Category Breakdown**
|
| 319 |
+
|
| 320 |
+
| Category | BF16 (Base) | THRIFT-BF16 | Difference | Status |
|
| 321 |
+
| :---- | ----: | ----: | ----: | :---- |
|
| 322 |
+
| High School Government | 97.93% | 94.82% | \-3.11% | ✅ Still Excellent |
|
| 323 |
+
| High School Psychology | 95.41% | 93.58% | \-1.83% | ✅ Well Preserved |
|
| 324 |
+
| Marketing | 95.73% | 91.88% | \-3.85% | ✅ Good |
|
| 325 |
+
| Professional Medicine | 92.28% | 79.78% | \-12.50% | ⚠️ Notable Drop |
|
| 326 |
+
| Clinical Knowledge | 92.83% | 85.66% | \-7.17% | ⚠️ Moderate Drop |
|
| 327 |
+
|
| 328 |
+
---
|
| 329 |
+
|
| 330 |
+
## Benchmarks
|
| 331 |
+
|
| 332 |
+
Coming soon.
|
| 333 |
+
|
| 334 |
+
## Research paper
|
| 335 |
+
|
| 336 |
+
Coming soon.
|
| 337 |
+
|
| 338 |
+
---
|
| 339 |
+
|
| 340 |
+
## License
|
| 341 |
+
|
| 342 |
+
This model is derived from MiniMax-M2 and distributed under the MIT License [http://github.com/MiniMax-AI/MiniMax-M2/blob/main/LICENSE](http://github.com/MiniMax-AI/MiniMax-M2/blob/main/LICENSE)
|
| 343 |
+
|
| 344 |
+
---
|
| 345 |
+
|
| 346 |
+
## Credits
|
| 347 |
+
|
| 348 |
+
Model conversion and HF Transformers code by @Qubitum at ModelCloud.
|
| 349 |
+
|
| 350 |
+
Positive references to related work:
|
| 351 |
+
|
| 352 |
+
* Alibaba Cloud Computing — [https://arxiv.org/html/2511.01354v1](https://arxiv.org/html/2511.01354v1)
|
| 353 |
+
* Cerebras — [https://arxiv.org/abs/2510.13999](https://arxiv.org/abs/2510.13999)
|
| 354 |
+
* QLoRA — [https://arxiv.org/abs/2307.02973](https://arxiv.org/abs/2307.02973)
|
| 355 |
+
* SparseGPT ([https://arxiv.org/abs/2301.00774](https://arxiv.org/abs/2301.00774))
|
| 356 |
+
* Wanda ([https://arxiv.org/abs/2306.11695](https://arxiv.org/abs/2306.11695))
|
| 357 |
+
* LLM-Pruner ([https://arxiv.org/abs/2305.11627](https://arxiv.org/abs/2305.11627))
|
| 358 |
+
* Sheared-LLaMA ([https://arxiv.org/abs/2310.06694](https://arxiv.org/abs/2310.06694))
|
| 359 |
+
* Wanda++ (2025):([https://arxiv.org/abs/2503.04992](https://arxiv.org/abs/2503.04992))
|
| 360 |
+
* Týr-the-Pruner ([https://arxiv.org/abs/2503.09657](https://arxiv.org/abs/2503.09657))
|