ppo-LunarLander-v2 / config.json
VectorZhao's picture
Upload PPO LunarLander-v2 trained agent
11ceb91 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff0366629e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff036662a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff036662b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff036662b90>", "_build": "<function ActorCriticPolicy._build at 0x7ff036662c20>", "forward": "<function ActorCriticPolicy.forward at 0x7ff036662cb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff036662d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff036662dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff036662e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff036662ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff036662f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff036663010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff0367fc340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719850294805906038, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3uJLzDsX26WAbsujrf4bVx4OU5GfUJOgAAgD8AAIA/mjFPO3smibo1ek24fo1oswDGMzm+kGo3AACAPwAAgD8zM+G5DNJ1PooUArwWmiq+XTxzOi/Tn70AAAAAAAAAALOXCD32ZC+6jWsTOkTryzRqVtO5XmopuQAAgD8AAAAAMwE5PUjXrLqoSnO6izgaNlB2CjlcOos5AACAPwAAgD/Nl+28H93guUqdxjpN/tc1a7S2Ow0T77kAAIA/AACAP01cgT0pmFq6PWagu4RucTiSXKg6pozdOAAAgD8AAIA/zVbqvFzbdbqS4IK7ythQOF/UZDtjFkU4AACAPwAAgD9mTMG8XId1uvJegbpJ+n219bEXO/98lzkAAIA/AACAP4BoKz0fpZU4A03fukIS37VwG8+6s6wFOgAAgD8AAIA/AAA3u1z7aro2gU85H7jLNAuUuzpVoG64AACAPwAAgD/ANY09Cvd5uYRPJbxn2iA3ZfIkuxr6k7YAAIA/AACAP5pzE73h9qK6a0iDunZhhbX7n/Y6vACXOQAAgD8AAIA/AGBXO7buLz2LxhO8faVzvh+SNTxMSkC9AAAAAAAAAAAzQ8K6Ujjwt9m6kLi1zJOzIlXNOzjTsTcAAIA/AACAP2bu2rw1248/3RRFvMylzb5rDIO9VtRAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGaHIQe3hGaMAWyUTegDjAF0lEdAkkFyDVYp2HV9lChoBkdAYnvanJkoW2gHTegDaAhHQJJGZ+XqqwR1fZQoaAZHQGT2zcynDSBoB03oA2gIR0CSSM3jMmngdX2UKGgGR0BiIEI1LrX2aAdN6ANoCEdAklDva+N96XV9lChoBkdAYymO/+Kjz2gHTegDaAhHQJJVBo7FKkF1fZQoaAZHQGRt9PLxI8RoB03oA2gIR0CSWN7qptJndX2UKGgGR0Bhg4ZwXIluaAdN6ANoCEdAkluI8QqZt3V9lChoBkdAZseiwB5ooWgHTegDaAhHQJJeo9U0elt1fZQoaAZHQGIpc7yQPqdoB03oA2gIR0CSX2oKlYU4dX2UKGgGR0Bj84AKfFrEaAdN6ANoCEdAkl+z9fkWAXV9lChoBkdAZGp4BV+7UWgHTegDaAhHQJJg5P3ztkZ1fZQoaAZHQGTH/LDAJsxoB03oA2gIR0CSYPymQ8wIdX2UKGgGR0BikEmY0EX+aAdN6ANoCEdAkm7htxdY4nV9lChoBkdAZR5Wo3rD62gHTegDaAhHQJJzJtl7MPl1fZQoaAZHQGR2IxxkupVoB03oA2gIR0CSd2mLLpzLdX2UKGgGR0BmUk0k4WDZaAdN6ANoCEdAknp2OMl1KXV9lChoBkdAYrrA7gbZOGgHTegDaAhHQJJ8/4vexfR1fZQoaAZHQGRTziCJ40NoB03oA2gIR0CSlizWPLgXdX2UKGgGR0BjKXJNj9XLaAdN6ANoCEdAkpjS5mRNh3V9lChoBkdAZSYCRwIdEWgHTegDaAhHQJKhi7sfJV91fZQoaAZHQGJYY3Ns3yZoB03oA2gIR0CSpQiXY150dX2UKGgGR0BmbwNVinYQaAdN6ANoCEdAkqiyE6DGtXV9lChoBkdAZUvTiKiwjmgHTegDaAhHQJKr5mjCYTl1fZQoaAZHQF1ciSaEzwdoB03oA2gIR0CSr5qXnhbXdX2UKGgGR0BiObqnm7rcaAdN6ANoCEdAkrCj8+A3DXV9lChoBkdAYlicSXdCV2gHTegDaAhHQJKxG8zyjHp1fZQoaAZHQGCgE6T4cm1oB03oA2gIR0CSsuUwi7kGdX2UKGgGR0Bm3QQOFxn4aAdN6ANoCEdAkrMKh6By0nV9lChoBkdAZcZ+XqqwQmgHTegDaAhHQJLDrzXjENx1fZQoaAZHQGZZTd1uBMBoB03oA2gIR0CSx9Fotcv/dX2UKGgGR0BlIFWGRFI/aAdN6ANoCEdAkswCmQ8wH3V9lChoBkdAaAFbbDdgv2gHTegDaAhHQJLO4bJfYz11fZQoaAZHQGSOvHktEohoB03oA2gIR0CS0UEP1+RYdX2UKGgGR0BjWGoxYaHcaAdN6ANoCEdAkumSCWeHz3V9lChoBkdAZS/NDc/MXGgHTegDaAhHQJLsvXUYsNF1fZQoaAZHQGgLXBP9DQZoB03oA2gIR0CS9NEIgNgCdX2UKGgGR0BlYbbtZ3cIaAdN6ANoCEdAkvfkw8GLUHV9lChoBkdAYs3Q/oq0+mgHTegDaAhHQJL7MzQ/oq11fZQoaAZHQGJt2JaaCtloB03oA2gIR0CS/fHnU2DQdX2UKGgGR0BlKTt3OfNBaAdN6ANoCEdAkwEIdZJTVHV9lChoBkdAY53i8WbgCWgHTegDaAhHQJMB0okRjBl1fZQoaAZHQGaNFKCg9NhoB03oA2gIR0CTAhxXXAdodX2UKGgGR0BoBxHskY4yaAdN6ANoCEdAkwNLhisnzHV9lChoBkdAY62+ZgG8mWgHTegDaAhHQJMDZBa9sad1fZQoaAZHQGLvebExZdRoB03oA2gIR0CTERvi97F9dX2UKGgGR0Bij+ozeoDQaAdN6ANoCEdAkxURwIdELHV9lChoBkdAYdbRYRujymgHTegDaAhHQJMaCw+t8u11fZQoaAZHQGGJQC0WuYBoB03oA2gIR0CTHZMZP2wndX2UKGgGR0BjBYBmwqy4aAdN6ANoCEdAkyCVNtZV43V9lChoBkdAZW+3Ytg8bWgHTegDaAhHQJM3BhG6PKd1fZQoaAZHQGL/hAnlXBBoB03oA2gIR0CTOXzTF2mpdX2UKGgGR0BjFPNs3yZsaAdN6ANoCEdAk0FeoLofS3V9lChoBkdAZroLNOdoWmgHTegDaAhHQJNEfORkmQd1fZQoaAZHQGZZrQ5WBBloB03oA2gIR0CTR7uYx+KCdX2UKGgGR0BfPQDNhVlxaAdN6ANoCEdAk0sgAMlTnHV9lChoBkdAX/q0UoKD02gHTegDaAhHQJNP3sqril11fZQoaAZHQGCjwFkhA4ZoB03oA2gIR0CTUQVqesgddX2UKGgGR0BhYSmhufmLaAdN6ANoCEdAk1F0wSJ0n3V9lChoBkdAYdTqLS/j82gHTegDaAhHQJNTKx2St/51fZQoaAZHQGSfiJXQtz1oB03oA2gIR0CTU05myxA0dX2UKGgGR0BmeLl7tzCDaAdN6ANoCEdAk2IDnzQNTnV9lChoBkdAYXqgi/wiJWgHTegDaAhHQJNmZysCDEp1fZQoaAZHQGifGCI1tO5oB03oA2gIR0CTarPtD2J0dX2UKGgGR0BmIS/wiJO4aAdN6ANoCEdAk23As5GSZHV9lChoBkdAZTI8IzFdcGgHTegDaAhHQJNwOSzPa+N1fZQoaAZHQGRRo7FKkEdoB03oA2gIR0CTiYBzV+ZxdX2UKGgGR0Bh3dYZEUj+aAdN6ANoCEdAk4w+5WilBXV9lChoBkdAYMcydFvyb2gHTegDaAhHQJOUii7Ciyp1fZQoaAZHQGNb5aFEiMZoB03oA2gIR0CTl9sgdOqOdX2UKGgGR0Bk3GkN4JNTaAdN6ANoCEdAk5tHtOVPe3V9lChoBkdAYmu9Gqgh82gHTegDaAhHQJOeSwnpjc51fZQoaAZHQGa+uDaoMrpoB03oA2gIR0CTodhMJx//dX2UKGgGR0Bjo+aScLBsaAdN6ANoCEdAk6K5telbeXV9lChoBkdAYyTPVurIYGgHTegDaAhHQJOjDG+9Jz11fZQoaAZHQGgm8OCoS+RoB03oA2gIR0CTpFQyAQQMdX2UKGgGR0Bh2cY2sJY1aAdN6ANoCEdAk6Rs6zVtoHV9lChoBkdAQ+rjHXEqD2gHS/xoCEdAk7FrSy+pO3V9lChoBkdAYiT7yhBZ6mgHTegDaAhHQJOz55WzWwx1fZQoaAZHQGSOA2Q4jr1oB03oA2gIR0CTuL0CzTnadX2UKGgGR0BjWhdB0IToaAdN6ANoCEdAk7w0pEx7A3V9lChoBkdAZAVQb+98JGgHTegDaAhHQJO+rMnqmj11fZQoaAZHQGUGZIpYs/ZoB03oA2gIR0CTwLTaTOgQdX2UKGgGR0Bg40078vVWaAdN6ANoCEdAk8VGaYu01XV9lChoBkdAZuZ5+pfhM2gHTegDaAhHQJPZEpkPMB91fZQoaAZHQE6c1ndweeZoB0vnaAhHQJPeXZ39rGl1fZQoaAZHQGFsz987ZFpoB03oA2gIR0CT4GhJAdGRdX2UKGgGR0Bkp1e+mFajaAdN6ANoCEdAk+Ryi22G7HV9lChoBkdAZo6vh60IC2gHTegDaAhHQJPo6X6ZYxN1fZQoaAZHQGNqBrWRRuVoB03oA2gIR0CT7E8FpwjudX2UKGgGR0Bgly3RXwLFaAdN6ANoCEdAk++a9PDYRXV9lChoBkdAZ3ELux8lX2gHTegDaAhHQJPwZfZ26kJ1fZQoaAZHQGfStQCSzPdoB03oA2gIR0CT8fpWV/tqdX2UKGgGR0BnQ47eVLSNaAdN6ANoCEdAk/IUEX+ERXV9lChoBkdAPA6cqe9SM2gHS+hoCEdAk/hBG2Cul3V9lChoBkdAZepwNLDhtWgHTegDaAhHQJP9l9uxbB51fZQoaAZHQGQpalLvkR1oB03oA2gIR0CT/y2ugYgrdX2UKGgGR0Bk79Iqbz9TaAdN6ANoCEdAlAKvyLAHmnV9lChoBkdAZ0k/8l5WzWgHTegDaAhHQJQGP9ZRsM11fZQoaAZHQGVXqBNEgGNoB03oA2gIR0CUCMMGX5WSdX2UKGgGR0BkJlpPAO8TaAdN6ANoCEdAlBAuW0JF9nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Tue Jun 18 14:18:04 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}