VC RL Maiden Commit
Browse files- README.md +37 -0
- VC_RL_PPO_LunarLander.zip +3 -0
- VC_RL_PPO_LunarLander/_stable_baselines3_version +1 -0
- VC_RL_PPO_LunarLander/data +95 -0
- VC_RL_PPO_LunarLander/policy.optimizer.pth +3 -0
- VC_RL_PPO_LunarLander/policy.pth +3 -0
- VC_RL_PPO_LunarLander/pytorch_variables.pth +3 -0
- VC_RL_PPO_LunarLander/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.85 +/- 22.55
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
VC_RL_PPO_LunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20a662beb52001132655da42901ecd4e5563db39e133583b5a68224159726113
|
3 |
+
size 147404
|
VC_RL_PPO_LunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
VC_RL_PPO_LunarLander/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6f8ec5dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe6f8ec5e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe6f8ec5ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe6f8ec5f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe6f8ec9040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe6f8ec90d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe6f8ec9160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe6f8ec91f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe6f8ec9280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe6f8ec9310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6f8ec93a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe6f8ec9430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe6f8ecb040>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1680674509041899813,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNzX72Fq+e5+i4fuFFkVrM7pXc7ti4+NwAAgD8AAIA/QCqFPXSsqz6myDO+6qaVvnFDCb3A1Vs8AAAAAAAAAAAAnKs+A2EFP7Lxrb2ZLsK+IQg8PlUNtr0AAAAAAAAAAKYsqT3R1vc9YnGRvg69WL50CM693A2jvAAAAAAAAAAAmnYdvnSuhj8PW8C+DXMSvxq2Xr7liki+AAAAAAAAAAA6YTy+8MKFPsD+gj6LdGi+Gz0cvNJ5jzwAAAAAAAAAADMFKDx77qK67rZhMuVJXLC2kUa69gO+sgAAgD8AAIA/ALUuPcPVF7qwAaUyYfULse0zL7v6TyazAACAPwAAgD+mFHG+3YATP7S9KD5B5WG+OCxHvfIalT0AAAAAAAAAAM2SNr3PNiY/gIh0PKxvzL4zf4q9y9tWvQAAAAAAAAAATU2uvXoubj+ANf69z3LqvuiF6b2gN469AAAAAAAAAACzZ6y96Em/PdL5rD0vyke+uI7wPBM9xL0AAAAAAAAAANrzHT7EpYA+TkWdvnusgr6eDBq74iH8vQAAAAAAAAAAgD8rvu3fuz9uPgy/A2Gbvo/6I77V3P29AAAAAAAAAACzMZm9ztNcP/6wbbxRVM++k00OvfBafjwAAAAAAAAAABo8vL10Jik+HzQKPcJguL14tN68hU2EPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRzzZzQxicECUhpRSlIwBbJRNewGMAXSUR0CQ7BBMi8nNdX2UKGgGaAloD0MIOX8TChHJbkCUhpRSlGgVTZ8BaBZHQJDsPfpD/l11fZQoaAZoCWgPQwgCt+7maUlwQJSGlFKUaBVNHwFoFkdAkO3Ps3Q2M3V9lChoBmgJaA9DCNGxg0qcgXFAlIaUUpRoFU1pAWgWR0CQ7lWI42jxdX2UKGgGaAloD0MIiIOEKJ+XcUCUhpRSlGgVTQQBaBZHQJDvDsKLKmt1fZQoaAZoCWgPQwiQZ5dvvSJxQJSGlFKUaBVNbQFoFkdAkO+UUKzAvnV9lChoBmgJaA9DCN481SE3nnJAlIaUUpRoFU0PAWgWR0CQ760waisXdX2UKGgGaAloD0MI3gAz30H3a0CUhpRSlGgVTTMBaBZHQJDwWV1Oj7B1fZQoaAZoCWgPQwgqqn6lc4ptQJSGlFKUaBVNCQFoFkdAkPFW3Sa3JHV9lChoBmgJaA9DCHV0XI2sC3NAlIaUUpRoFU0VAWgWR0CQ8msl9jPOdX2UKGgGaAloD0MIggNaugLRb0CUhpRSlGgVTUcBaBZHQJDzEJZ4fOl1fZQoaAZoCWgPQwhK7rCJjB5xQJSGlFKUaBVNCgFoFkdAkPM0RSP2f3V9lChoBmgJaA9DCKWHodVJ/W9AlIaUUpRoFU0xAWgWR0CQ9YHs1KoRdX2UKGgGaAloD0MIr3srEhO0bUCUhpRSlGgVTTIBaBZHQJD17yZrpJR1fZQoaAZoCWgPQwjiBKbT+idyQJSGlFKUaBVNdAFoFkdAkPYDBEa2nnV9lChoBmgJaA9DCDs1lxuMAnFAlIaUUpRoFUv/aBZHQJD2NxcVxjt1fZQoaAZoCWgPQwjhRsoWyWZxQJSGlFKUaBVNqgNoFkdAkPZEhFEy+HV9lChoBmgJaA9DCBdIUPyYiXNAlIaUUpRoFU0SAWgWR0CQ906y0KJEdX2UKGgGaAloD0MIIxYx7PDxcECUhpRSlGgVS/BoFkdAkPhSad+Xq3V9lChoBmgJaA9DCLt/LESHVmJAlIaUUpRoFU3oA2gWR0CQ+JJiy6czdX2UKGgGaAloD0MIAfbRqau4bkCUhpRSlGgVTScBaBZHQJD4z+jua4N1fZQoaAZoCWgPQwgq/YSz26pxQJSGlFKUaBVNGgFoFkdAkPjjjR2KVXV9lChoBmgJaA9DCKGgFK1cAG5AlIaUUpRoFU2iAWgWR0CQ+aUvf0mMdX2UKGgGaAloD0MI3H75ZEUvbkCUhpRSlGgVTUYBaBZHQJD+OMuOCGx1fZQoaAZoCWgPQwhSX5Z26iBvQJSGlFKUaBVNvgFoFkdAkP50KRdQf3V9lChoBmgJaA9DCAcHexND2k9AlIaUUpRoFUu9aBZHQJD/Nxp+MIh1fZQoaAZoCWgPQwizQpHuZyBwQJSGlFKUaBVNJgFoFkdAkP/q3y7PIHV9lChoBmgJaA9DCIfguIybfW9AlIaUUpRoFU1SAWgWR0CRAPtv4ubrdX2UKGgGaAloD0MIppnudZLIcUCUhpRSlGgVTT0BaBZHQJEA+t7rs0J1fZQoaAZoCWgPQwgiGt1BLGdzQJSGlFKUaBVNQwFoFkdAkQEf8hs673V9lChoBmgJaA9DCBQjS+aYhXJAlIaUUpRoFU0zAWgWR0CRAb0mMOwxdX2UKGgGaAloD0MIYJFfP8SnckCUhpRSlGgVTa0BaBZHQJEBvcEeQuF1fZQoaAZoCWgPQwhoCMcse9tuQJSGlFKUaBVNWwFoFkdAkQR3pB5X2nV9lChoBmgJaA9DCHuH26Fhnm5AlIaUUpRoFU1WAWgWR0CRBTtgrpaBdX2UKGgGaAloD0MIH6FmSFURcUCUhpRSlGgVTWcCaBZHQJEF71WbPQh1fZQoaAZoCWgPQwh0fLQ4IyxxQJSGlFKUaBVNmwFoFkdAkQY7vTgEU3V9lChoBmgJaA9DCPT+P06Y+nFAlIaUUpRoFU0KAWgWR0CRBwtpEhJRdX2UKGgGaAloD0MI4XzqWCWKbUCUhpRSlGgVTQUBaBZHQJEHDBRAKOV1fZQoaAZoCWgPQwiCc0aUNoZxQJSGlFKUaBVNxQFoFkdAkQdOy/sVtXV9lChoBmgJaA9DCLK5ap6jfXJAlIaUUpRoFU0zAWgWR0CRCU9yLhrFdX2UKGgGaAloD0MIx53SwXqNcECUhpRSlGgVTSsBaBZHQJEJtqEeyRl1fZQoaAZoCWgPQwiA8KFES+dsQJSGlFKUaBVNHwFoFkdAkQpUSRKYiXV9lChoBmgJaA9DCNcWnpcKnXJAlIaUUpRoFU0kAWgWR0CRIFjbi6xxdX2UKGgGaAloD0MINXwL68aXcECUhpRSlGgVTS0BaBZHQJEghS4vvjR1fZQoaAZoCWgPQwikiAyreAJzQJSGlFKUaBVNfQJoFkdAkSDAfuCwr3V9lChoBmgJaA9DCDpdFhOblHBAlIaUUpRoFU0hAWgWR0CRINZuhsZYdX2UKGgGaAloD0MIIsUAiWYtcUCUhpRSlGgVTTIBaBZHQJEhPcmBvrJ1fZQoaAZoCWgPQwgY0At3bi9xQJSGlFKUaBVNOAFoFkdAkSOsa4tpVXV9lChoBmgJaA9DCKPp7GSw/3BAlIaUUpRoFU0jAWgWR0CRJGBDG96DdX2UKGgGaAloD0MIttrDXmiicUCUhpRSlGgVTQUBaBZHQJEklo8IRiB1fZQoaAZoCWgPQwj8Ny9OvPpyQJSGlFKUaBVNQAFoFkdAkSSaAvtdA3V9lChoBmgJaA9DCDHtm/srZ21AlIaUUpRoFU0kAWgWR0CRJLeJHiFTdX2UKGgGaAloD0MIiIOEKJ8Kc0CUhpRSlGgVTXUDaBZHQJEkyyIHkcV1fZQoaAZoCWgPQwjvjSEAOHZLQJSGlFKUaBVLw2gWR0CRJN606YE4dX2UKGgGaAloD0MIuCHGax76cUCUhpRSlGgVTRkBaBZHQJElF4IKMNt1fZQoaAZoCWgPQwjS4oxhjvtwQJSGlFKUaBVNAgFoFkdAkSdGpZOi4HV9lChoBmgJaA9DCElL5e0IlHJAlIaUUpRoFU0KAWgWR0CRJ2Az544ZdX2UKGgGaAloD0MIOnR63o3jcUCUhpRSlGgVTScBaBZHQJEn3lXA/LV1fZQoaAZoCWgPQwg8E5okludyQJSGlFKUaBVNEgFoFkdAkSftcjZ+QXV9lChoBmgJaA9DCKg65GY4O2xAlIaUUpRoFU0QAWgWR0CRJ/azu4PPdX2UKGgGaAloD0MI0JuKVJjQb0CUhpRSlGgVTQEBaBZHQJEoAtthuwZ1fZQoaAZoCWgPQwhdbcX+shlyQJSGlFKUaBVNmgFoFkdAkSiEt29tdnV9lChoBmgJaA9DCGGqmbWUD25AlIaUUpRoFU1mAWgWR0CRKKfHxSYPdX2UKGgGaAloD0MIucZnsn/oTUCUhpRSlGgVS8xoFkdAkSl996Tnq3V9lChoBmgJaA9DCKQ2cXK/R1BAlIaUUpRoFUvbaBZHQJEqhIClrM11fZQoaAZoCWgPQwhdxeI3RZdyQJSGlFKUaBVNAAFoFkdAkSr6xLTQV3V9lChoBmgJaA9DCMH+69y0KnBAlIaUUpRoFU0fAWgWR0CRKwE2pAD8dX2UKGgGaAloD0MIchk3NZAPcUCUhpRSlGgVTQYBaBZHQJErI+u/1xt1fZQoaAZoCWgPQwiQEru2NyNuQJSGlFKUaBVNGAFoFkdAkSvV6Z6Uq3V9lChoBmgJaA9DCNKm6h4ZenJAlIaUUpRoFU0hAWgWR0CRK/2hIvrXdX2UKGgGaAloD0MIB13Cofd3ckCUhpRSlGgVTTEBaBZHQJEsT38GcF11fZQoaAZoCWgPQwjw37w48XVsQJSGlFKUaBVNDgFoFkdAkS8PSc9W63V9lChoBmgJaA9DCIjzcAJTJ3BAlIaUUpRoFU0xAWgWR0CRL2bNr0rcdX2UKGgGaAloD0MI+U1hpYJBckCUhpRSlGgVTR4BaBZHQJEvhzDGcWl1fZQoaAZoCWgPQwg0v5oDRDFwQJSGlFKUaBVNHwFoFkdAkS+qJZW7v3V9lChoBmgJaA9DCJhPVgxX8nBAlIaUUpRoFU04AWgWR0CRL7sMRYigdX2UKGgGaAloD0MIVBnG3WA8cECUhpRSlGgVS/loFkdAkTBvJJXhfnV9lChoBmgJaA9DCDzYYrcP3XFAlIaUUpRoFU06AWgWR0CRMIAlfJFLdX2UKGgGaAloD0MIkGtDxbj/b0CUhpRSlGgVTSwBaBZHQJEwxFUhmoR1fZQoaAZoCWgPQwjWql0T0nI8QJSGlFKUaBVL02gWR0CRMQw8GLUDdX2UKGgGaAloD0MIeCefHluOcECUhpRSlGgVS+1oFkdAkTFCcbzbvnV9lChoBmgJaA9DCHCxogbTk3BAlIaUUpRoFU1TAWgWR0CRMeHAAQxvdX2UKGgGaAloD0MIcLTjhl9mbUCUhpRSlGgVTQEBaBZHQJEyS6g/Tsp1fZQoaAZoCWgPQwg1CHO7l3NBQJSGlFKUaBVL6WgWR0CRMtkwevIPdX2UKGgGaAloD0MIvJLkuX6pcECUhpRSlGgVTUABaBZHQJE0qKjzqbB1fZQoaAZoCWgPQwhVhQZi2TlyQJSGlFKUaBVNbgFoFkdAkTUH8CPp6nV9lChoBmgJaA9DCJPjTungwWxAlIaUUpRoFU1LAWgWR0CRNTUi6g/UdX2UKGgGaAloD0MIFOl+ToHScECUhpRSlGgVTQ4BaBZHQJE2jPQfIS11fZQoaAZoCWgPQwiDUUmdAERxQJSGlFKUaBVL+WgWR0CRN15i3G4rdX2UKGgGaAloD0MI4Ec17Lf/cECUhpRSlGgVTR4BaBZHQJE3fJuEVWV1fZQoaAZoCWgPQwgb17/rsypvQJSGlFKUaBVL/2gWR0CROCOmzjWDdX2UKGgGaAloD0MIdXKG4k7dckCUhpRSlGgVTQoBaBZHQJE4KfdyksV1fZQoaAZoCWgPQwjyejAp/kRxQJSGlFKUaBVNMgFoFkdAkThJfD1oQHV9lChoBmgJaA9DCFVrYRbaXHBAlIaUUpRoFU1SAWgWR0CROOla8pTddX2UKGgGaAloD0MIey5Tk+B7cUCUhpRSlGgVTSoBaBZHQJE5k+kgwGp1fZQoaAZoCWgPQwgmUwWjkrIqQJSGlFKUaBVLn2gWR0CROe2CNCJGdX2UKGgGaAloD0MIYmh1ckZBckCUhpRSlGgVTRABaBZHQJE6DzUZvUB1fZQoaAZoCWgPQwjpSZnUkMJwQJSGlFKUaBVNZAFoFkdAkTpdrbg0j3V9lChoBmgJaA9DCCKLNPHOF3FAlIaUUpRoFU2WAWgWR0CROvk1Mue0dX2UKGgGaAloD0MIbcmqCDfHckCUhpRSlGgVTUkBaBZHQJE7FX/5tWN1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.997,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
VC_RL_PPO_LunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58d68f1ec101668e76dec3efd57b57d79f85562e1a094438886d74318a291b38
|
3 |
+
size 87929
|
VC_RL_PPO_LunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7610c6a5686a359a12cfc21e82f4e67d129942b59fe45e207008db7e018c3ed1
|
3 |
+
size 43393
|
VC_RL_PPO_LunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
VC_RL_PPO_LunarLander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6f8ec5dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe6f8ec5e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe6f8ec5ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe6f8ec5f70>", "_build": "<function ActorCriticPolicy._build at 0x7fe6f8ec9040>", "forward": "<function ActorCriticPolicy.forward at 0x7fe6f8ec90d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe6f8ec9160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe6f8ec91f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe6f8ec9280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe6f8ec9310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6f8ec93a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe6f8ec9430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe6f8ecb040>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680674509041899813, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNzX72Fq+e5+i4fuFFkVrM7pXc7ti4+NwAAgD8AAIA/QCqFPXSsqz6myDO+6qaVvnFDCb3A1Vs8AAAAAAAAAAAAnKs+A2EFP7Lxrb2ZLsK+IQg8PlUNtr0AAAAAAAAAAKYsqT3R1vc9YnGRvg69WL50CM693A2jvAAAAAAAAAAAmnYdvnSuhj8PW8C+DXMSvxq2Xr7liki+AAAAAAAAAAA6YTy+8MKFPsD+gj6LdGi+Gz0cvNJ5jzwAAAAAAAAAADMFKDx77qK67rZhMuVJXLC2kUa69gO+sgAAgD8AAIA/ALUuPcPVF7qwAaUyYfULse0zL7v6TyazAACAPwAAgD+mFHG+3YATP7S9KD5B5WG+OCxHvfIalT0AAAAAAAAAAM2SNr3PNiY/gIh0PKxvzL4zf4q9y9tWvQAAAAAAAAAATU2uvXoubj+ANf69z3LqvuiF6b2gN469AAAAAAAAAACzZ6y96Em/PdL5rD0vyke+uI7wPBM9xL0AAAAAAAAAANrzHT7EpYA+TkWdvnusgr6eDBq74iH8vQAAAAAAAAAAgD8rvu3fuz9uPgy/A2Gbvo/6I77V3P29AAAAAAAAAACzMZm9ztNcP/6wbbxRVM++k00OvfBafjwAAAAAAAAAABo8vL10Jik+HzQKPcJguL14tN68hU2EPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRzzZzQxicECUhpRSlIwBbJRNewGMAXSUR0CQ7BBMi8nNdX2UKGgGaAloD0MIOX8TChHJbkCUhpRSlGgVTZ8BaBZHQJDsPfpD/l11fZQoaAZoCWgPQwgCt+7maUlwQJSGlFKUaBVNHwFoFkdAkO3Ps3Q2M3V9lChoBmgJaA9DCNGxg0qcgXFAlIaUUpRoFU1pAWgWR0CQ7lWI42jxdX2UKGgGaAloD0MIiIOEKJ+XcUCUhpRSlGgVTQQBaBZHQJDvDsKLKmt1fZQoaAZoCWgPQwiQZ5dvvSJxQJSGlFKUaBVNbQFoFkdAkO+UUKzAvnV9lChoBmgJaA9DCN481SE3nnJAlIaUUpRoFU0PAWgWR0CQ760waisXdX2UKGgGaAloD0MI3gAz30H3a0CUhpRSlGgVTTMBaBZHQJDwWV1Oj7B1fZQoaAZoCWgPQwgqqn6lc4ptQJSGlFKUaBVNCQFoFkdAkPFW3Sa3JHV9lChoBmgJaA9DCHV0XI2sC3NAlIaUUpRoFU0VAWgWR0CQ8msl9jPOdX2UKGgGaAloD0MIggNaugLRb0CUhpRSlGgVTUcBaBZHQJDzEJZ4fOl1fZQoaAZoCWgPQwhK7rCJjB5xQJSGlFKUaBVNCgFoFkdAkPM0RSP2f3V9lChoBmgJaA9DCKWHodVJ/W9AlIaUUpRoFU0xAWgWR0CQ9YHs1KoRdX2UKGgGaAloD0MIr3srEhO0bUCUhpRSlGgVTTIBaBZHQJD17yZrpJR1fZQoaAZoCWgPQwjiBKbT+idyQJSGlFKUaBVNdAFoFkdAkPYDBEa2nnV9lChoBmgJaA9DCDs1lxuMAnFAlIaUUpRoFUv/aBZHQJD2NxcVxjt1fZQoaAZoCWgPQwjhRsoWyWZxQJSGlFKUaBVNqgNoFkdAkPZEhFEy+HV9lChoBmgJaA9DCBdIUPyYiXNAlIaUUpRoFU0SAWgWR0CQ906y0KJEdX2UKGgGaAloD0MIIxYx7PDxcECUhpRSlGgVS/BoFkdAkPhSad+Xq3V9lChoBmgJaA9DCLt/LESHVmJAlIaUUpRoFU3oA2gWR0CQ+JJiy6czdX2UKGgGaAloD0MIAfbRqau4bkCUhpRSlGgVTScBaBZHQJD4z+jua4N1fZQoaAZoCWgPQwgq/YSz26pxQJSGlFKUaBVNGgFoFkdAkPjjjR2KVXV9lChoBmgJaA9DCKGgFK1cAG5AlIaUUpRoFU2iAWgWR0CQ+aUvf0mMdX2UKGgGaAloD0MI3H75ZEUvbkCUhpRSlGgVTUYBaBZHQJD+OMuOCGx1fZQoaAZoCWgPQwhSX5Z26iBvQJSGlFKUaBVNvgFoFkdAkP50KRdQf3V9lChoBmgJaA9DCAcHexND2k9AlIaUUpRoFUu9aBZHQJD/Nxp+MIh1fZQoaAZoCWgPQwizQpHuZyBwQJSGlFKUaBVNJgFoFkdAkP/q3y7PIHV9lChoBmgJaA9DCIfguIybfW9AlIaUUpRoFU1SAWgWR0CRAPtv4ubrdX2UKGgGaAloD0MIppnudZLIcUCUhpRSlGgVTT0BaBZHQJEA+t7rs0J1fZQoaAZoCWgPQwgiGt1BLGdzQJSGlFKUaBVNQwFoFkdAkQEf8hs673V9lChoBmgJaA9DCBQjS+aYhXJAlIaUUpRoFU0zAWgWR0CRAb0mMOwxdX2UKGgGaAloD0MIYJFfP8SnckCUhpRSlGgVTa0BaBZHQJEBvcEeQuF1fZQoaAZoCWgPQwhoCMcse9tuQJSGlFKUaBVNWwFoFkdAkQR3pB5X2nV9lChoBmgJaA9DCHuH26Fhnm5AlIaUUpRoFU1WAWgWR0CRBTtgrpaBdX2UKGgGaAloD0MIH6FmSFURcUCUhpRSlGgVTWcCaBZHQJEF71WbPQh1fZQoaAZoCWgPQwh0fLQ4IyxxQJSGlFKUaBVNmwFoFkdAkQY7vTgEU3V9lChoBmgJaA9DCPT+P06Y+nFAlIaUUpRoFU0KAWgWR0CRBwtpEhJRdX2UKGgGaAloD0MI4XzqWCWKbUCUhpRSlGgVTQUBaBZHQJEHDBRAKOV1fZQoaAZoCWgPQwiCc0aUNoZxQJSGlFKUaBVNxQFoFkdAkQdOy/sVtXV9lChoBmgJaA9DCLK5ap6jfXJAlIaUUpRoFU0zAWgWR0CRCU9yLhrFdX2UKGgGaAloD0MIx53SwXqNcECUhpRSlGgVTSsBaBZHQJEJtqEeyRl1fZQoaAZoCWgPQwiA8KFES+dsQJSGlFKUaBVNHwFoFkdAkQpUSRKYiXV9lChoBmgJaA9DCNcWnpcKnXJAlIaUUpRoFU0kAWgWR0CRIFjbi6xxdX2UKGgGaAloD0MINXwL68aXcECUhpRSlGgVTS0BaBZHQJEghS4vvjR1fZQoaAZoCWgPQwikiAyreAJzQJSGlFKUaBVNfQJoFkdAkSDAfuCwr3V9lChoBmgJaA9DCDpdFhOblHBAlIaUUpRoFU0hAWgWR0CRINZuhsZYdX2UKGgGaAloD0MIIsUAiWYtcUCUhpRSlGgVTTIBaBZHQJEhPcmBvrJ1fZQoaAZoCWgPQwgY0At3bi9xQJSGlFKUaBVNOAFoFkdAkSOsa4tpVXV9lChoBmgJaA9DCKPp7GSw/3BAlIaUUpRoFU0jAWgWR0CRJGBDG96DdX2UKGgGaAloD0MIttrDXmiicUCUhpRSlGgVTQUBaBZHQJEklo8IRiB1fZQoaAZoCWgPQwj8Ny9OvPpyQJSGlFKUaBVNQAFoFkdAkSSaAvtdA3V9lChoBmgJaA9DCDHtm/srZ21AlIaUUpRoFU0kAWgWR0CRJLeJHiFTdX2UKGgGaAloD0MIiIOEKJ8Kc0CUhpRSlGgVTXUDaBZHQJEkyyIHkcV1fZQoaAZoCWgPQwjvjSEAOHZLQJSGlFKUaBVLw2gWR0CRJN606YE4dX2UKGgGaAloD0MIuCHGax76cUCUhpRSlGgVTRkBaBZHQJElF4IKMNt1fZQoaAZoCWgPQwjS4oxhjvtwQJSGlFKUaBVNAgFoFkdAkSdGpZOi4HV9lChoBmgJaA9DCElL5e0IlHJAlIaUUpRoFU0KAWgWR0CRJ2Az544ZdX2UKGgGaAloD0MIOnR63o3jcUCUhpRSlGgVTScBaBZHQJEn3lXA/LV1fZQoaAZoCWgPQwg8E5okludyQJSGlFKUaBVNEgFoFkdAkSftcjZ+QXV9lChoBmgJaA9DCKg65GY4O2xAlIaUUpRoFU0QAWgWR0CRJ/azu4PPdX2UKGgGaAloD0MI0JuKVJjQb0CUhpRSlGgVTQEBaBZHQJEoAtthuwZ1fZQoaAZoCWgPQwhdbcX+shlyQJSGlFKUaBVNmgFoFkdAkSiEt29tdnV9lChoBmgJaA9DCGGqmbWUD25AlIaUUpRoFU1mAWgWR0CRKKfHxSYPdX2UKGgGaAloD0MIucZnsn/oTUCUhpRSlGgVS8xoFkdAkSl996Tnq3V9lChoBmgJaA9DCKQ2cXK/R1BAlIaUUpRoFUvbaBZHQJEqhIClrM11fZQoaAZoCWgPQwhdxeI3RZdyQJSGlFKUaBVNAAFoFkdAkSr6xLTQV3V9lChoBmgJaA9DCMH+69y0KnBAlIaUUpRoFU0fAWgWR0CRKwE2pAD8dX2UKGgGaAloD0MIchk3NZAPcUCUhpRSlGgVTQYBaBZHQJErI+u/1xt1fZQoaAZoCWgPQwiQEru2NyNuQJSGlFKUaBVNGAFoFkdAkSvV6Z6Uq3V9lChoBmgJaA9DCNKm6h4ZenJAlIaUUpRoFU0hAWgWR0CRK/2hIvrXdX2UKGgGaAloD0MIB13Cofd3ckCUhpRSlGgVTTEBaBZHQJEsT38GcF11fZQoaAZoCWgPQwjw37w48XVsQJSGlFKUaBVNDgFoFkdAkS8PSc9W63V9lChoBmgJaA9DCIjzcAJTJ3BAlIaUUpRoFU0xAWgWR0CRL2bNr0rcdX2UKGgGaAloD0MI+U1hpYJBckCUhpRSlGgVTR4BaBZHQJEvhzDGcWl1fZQoaAZoCWgPQwg0v5oDRDFwQJSGlFKUaBVNHwFoFkdAkS+qJZW7v3V9lChoBmgJaA9DCJhPVgxX8nBAlIaUUpRoFU04AWgWR0CRL7sMRYigdX2UKGgGaAloD0MIVBnG3WA8cECUhpRSlGgVS/loFkdAkTBvJJXhfnV9lChoBmgJaA9DCDzYYrcP3XFAlIaUUpRoFU06AWgWR0CRMIAlfJFLdX2UKGgGaAloD0MIkGtDxbj/b0CUhpRSlGgVTSwBaBZHQJEwxFUhmoR1fZQoaAZoCWgPQwjWql0T0nI8QJSGlFKUaBVL02gWR0CRMQw8GLUDdX2UKGgGaAloD0MIeCefHluOcECUhpRSlGgVS+1oFkdAkTFCcbzbvnV9lChoBmgJaA9DCHCxogbTk3BAlIaUUpRoFU1TAWgWR0CRMeHAAQxvdX2UKGgGaAloD0MIcLTjhl9mbUCUhpRSlGgVTQEBaBZHQJEyS6g/Tsp1fZQoaAZoCWgPQwg1CHO7l3NBQJSGlFKUaBVL6WgWR0CRMtkwevIPdX2UKGgGaAloD0MIvJLkuX6pcECUhpRSlGgVTUABaBZHQJE0qKjzqbB1fZQoaAZoCWgPQwhVhQZi2TlyQJSGlFKUaBVNbgFoFkdAkTUH8CPp6nV9lChoBmgJaA9DCJPjTungwWxAlIaUUpRoFU1LAWgWR0CRNTUi6g/UdX2UKGgGaAloD0MIFOl+ToHScECUhpRSlGgVTQ4BaBZHQJE2jPQfIS11fZQoaAZoCWgPQwiDUUmdAERxQJSGlFKUaBVL+WgWR0CRN15i3G4rdX2UKGgGaAloD0MI4Ec17Lf/cECUhpRSlGgVTR4BaBZHQJE3fJuEVWV1fZQoaAZoCWgPQwgb17/rsypvQJSGlFKUaBVL/2gWR0CROCOmzjWDdX2UKGgGaAloD0MIdXKG4k7dckCUhpRSlGgVTQoBaBZHQJE4KfdyksV1fZQoaAZoCWgPQwjyejAp/kRxQJSGlFKUaBVNMgFoFkdAkThJfD1oQHV9lChoBmgJaA9DCFVrYRbaXHBAlIaUUpRoFU1SAWgWR0CROOla8pTddX2UKGgGaAloD0MIey5Tk+B7cUCUhpRSlGgVTSoBaBZHQJE5k+kgwGp1fZQoaAZoCWgPQwgmUwWjkrIqQJSGlFKUaBVLn2gWR0CROe2CNCJGdX2UKGgGaAloD0MIYmh1ckZBckCUhpRSlGgVTRABaBZHQJE6DzUZvUB1fZQoaAZoCWgPQwjpSZnUkMJwQJSGlFKUaBVNZAFoFkdAkTpdrbg0j3V9lChoBmgJaA9DCCKLNPHOF3FAlIaUUpRoFU2WAWgWR0CROvk1Mue0dX2UKGgGaAloD0MIbcmqCDfHckCUhpRSlGgVTUkBaBZHQJE7FX/5tWN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.997, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (231 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.8462715105759, "std_reward": 22.553222389958687, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-05T06:21:34.832786"}
|