VarunSivamani commited on
Commit
6f2f64f
1 Parent(s): 7b1fb65

model file

Browse files
Files changed (1) hide show
  1. model.py +200 -0
model.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import functional as F
4
+
5
+ # hyperparameters
6
+ batch_size = 64 # how many independent sequences will we process in parallel?
7
+ block_size = 256 # what is the maximum context length for predictions?
8
+ max_iters = 5000
9
+ eval_interval = 500
10
+ learning_rate = 3e-4
11
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
12
+ eval_iters = 200
13
+ n_embd = 384
14
+ n_head = 6
15
+ n_layer = 6
16
+ dropout = 0.2
17
+ # ------------
18
+
19
+ torch.manual_seed(1337)
20
+
21
+ # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
22
+ with open('input.txt', 'r', encoding='utf-8') as f:
23
+ text = f.read()
24
+
25
+ # here are all the unique characters that occur in this text
26
+ chars = sorted(list(set(text)))
27
+ vocab_size = len(chars)
28
+ # create a mapping from characters to integers
29
+ stoi = { ch:i for i,ch in enumerate(chars) }
30
+ itos = { i:ch for i,ch in enumerate(chars) }
31
+ encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
32
+ decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
33
+
34
+ # Train and test splits
35
+ data = torch.tensor(encode(text), dtype=torch.long)
36
+ n = int(0.9*len(data)) # first 90% will be train, rest val
37
+ train_data = data[:n]
38
+ val_data = data[n:]
39
+
40
+ # data loading
41
+ def get_batch(split):
42
+ # generate a small batch of data of inputs x and targets y
43
+ data = train_data if split == 'train' else val_data
44
+ ix = torch.randint(len(data) - block_size, (batch_size,))
45
+ x = torch.stack([data[i:i+block_size] for i in ix])
46
+ y = torch.stack([data[i+1:i+block_size+1] for i in ix])
47
+ x, y = x.to(device), y.to(device)
48
+ return x, y
49
+
50
+ @torch.no_grad()
51
+ def estimate_loss():
52
+ out = {}
53
+ model.eval()
54
+ for split in ['train', 'val']:
55
+ losses = torch.zeros(eval_iters)
56
+ for k in range(eval_iters):
57
+ X, Y = get_batch(split)
58
+ logits, loss = model(X, Y)
59
+ losses[k] = loss.item()
60
+ out[split] = losses.mean()
61
+ model.train()
62
+ return out
63
+
64
+ class Head(nn.Module):
65
+ """ one head of self-attention """
66
+
67
+ def __init__(self, head_size):
68
+ super().__init__()
69
+ self.key = nn.Linear(n_embd, head_size, bias=False)
70
+ self.query = nn.Linear(n_embd, head_size, bias=False)
71
+ self.value = nn.Linear(n_embd, head_size, bias=False)
72
+ self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
73
+
74
+ self.dropout = nn.Dropout(dropout)
75
+
76
+ def forward(self, x):
77
+ # input of size (batch, time-step, channels)
78
+ # output of size (batch, time-step, head size)
79
+ B,T,C = x.shape
80
+ k = self.key(x) # (B,T,hs)
81
+ q = self.query(x) # (B,T,hs)
82
+ # compute attention scores ("affinities")
83
+ wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
84
+ wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
85
+ wei = F.softmax(wei, dim=-1) # (B, T, T)
86
+ wei = self.dropout(wei)
87
+ # perform the weighted aggregation of the values
88
+ v = self.value(x) # (B,T,hs)
89
+ out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
90
+ return out
91
+
92
+ class MultiHeadAttention(nn.Module):
93
+ """ multiple heads of self-attention in parallel """
94
+
95
+ def __init__(self, num_heads, head_size):
96
+ super().__init__()
97
+ self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
98
+ self.proj = nn.Linear(head_size * num_heads, n_embd)
99
+ self.dropout = nn.Dropout(dropout)
100
+
101
+ def forward(self, x):
102
+ out = torch.cat([h(x) for h in self.heads], dim=-1)
103
+ out = self.dropout(self.proj(out))
104
+ return out
105
+
106
+ class FeedFoward(nn.Module):
107
+ """ a simple linear layer followed by a non-linearity """
108
+
109
+ def __init__(self, n_embd):
110
+ super().__init__()
111
+ self.net = nn.Sequential(
112
+ nn.Linear(n_embd, 4 * n_embd),
113
+ nn.ReLU(),
114
+ nn.Linear(4 * n_embd, n_embd),
115
+ nn.Dropout(dropout),
116
+ )
117
+
118
+ def forward(self, x):
119
+ return self.net(x)
120
+
121
+ class Block(nn.Module):
122
+ """ Transformer block: communication followed by computation """
123
+
124
+ def __init__(self, n_embd, n_head):
125
+ # n_embd: embedding dimension, n_head: the number of heads we'd like
126
+ super().__init__()
127
+ head_size = n_embd // n_head
128
+ self.sa = MultiHeadAttention(n_head, head_size)
129
+ self.ffwd = FeedFoward(n_embd)
130
+ self.ln1 = nn.LayerNorm(n_embd)
131
+ self.ln2 = nn.LayerNorm(n_embd)
132
+
133
+ def forward(self, x):
134
+ x = x + self.sa(self.ln1(x))
135
+ x = x + self.ffwd(self.ln2(x))
136
+ return x
137
+
138
+ class GPTLanguageModel(nn.Module):
139
+
140
+ def __init__(self):
141
+ super().__init__()
142
+ # each token directly reads off the logits for the next token from a lookup table
143
+ self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
144
+ self.position_embedding_table = nn.Embedding(block_size, n_embd)
145
+ self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
146
+ self.ln_f = nn.LayerNorm(n_embd) # final layer norm
147
+ self.lm_head = nn.Linear(n_embd, vocab_size)
148
+
149
+ # better init, not covered in the original GPT video, but important, will cover in followup video
150
+ self.apply(self._init_weights)
151
+
152
+ def _init_weights(self, module):
153
+ if isinstance(module, nn.Linear):
154
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
155
+ if module.bias is not None:
156
+ torch.nn.init.zeros_(module.bias)
157
+ elif isinstance(module, nn.Embedding):
158
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
159
+
160
+ def forward(self, idx, targets=None):
161
+ B, T = idx.shape
162
+
163
+ # idx and targets are both (B,T) tensor of integers
164
+ tok_emb = self.token_embedding_table(idx) # (B,T,C)
165
+ pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
166
+ x = tok_emb + pos_emb # (B,T,C)
167
+ x = self.blocks(x) # (B,T,C)
168
+ x = self.ln_f(x) # (B,T,C)
169
+ logits = self.lm_head(x) # (B,T,vocab_size)
170
+
171
+ if targets is None:
172
+ loss = None
173
+ else:
174
+ B, T, C = logits.shape
175
+ logits = logits.view(B*T, C)
176
+ targets = targets.view(B*T)
177
+ loss = F.cross_entropy(logits, targets)
178
+
179
+ return logits, loss
180
+
181
+ def generate(self, idx, max_new_tokens):
182
+ # idx is (B, T) array of indices in the current context
183
+ for _ in range(max_new_tokens):
184
+ # crop idx to the last block_size tokens
185
+ idx_cond = idx[:, -block_size:]
186
+ # get the predictions
187
+ logits, loss = self(idx_cond)
188
+ # focus only on the last time step
189
+ logits = logits[:, -1, :] # becomes (B, C)
190
+ # apply softmax to get probabilities
191
+ probs = F.softmax(logits, dim=-1) # (B, C)
192
+ # sample from the distribution
193
+ idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
194
+ # append sampled index to the running sequence
195
+ idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
196
+ return idx
197
+
198
+ model = GPTLanguageModel()
199
+ m = model.to(device)
200
+ context = torch.zeros((1, 1), dtype=torch.long, device=device)