VanessaSchenkel commited on
Commit
1b2dfde
1 Parent(s): 37d4b17

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - translation
4
+ - generated_from_trainer
5
+ datasets:
6
+ - news_commentary
7
+ metrics:
8
+ - bleu
9
+ model-index:
10
+ - name: pt-unicamp-news
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: news_commentary
17
+ type: news_commentary
18
+ config: en-pt
19
+ split: train
20
+ args: en-pt
21
+ metrics:
22
+ - name: Bleu
23
+ type: bleu
24
+ value: 39.16010441514751
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # pt-unicamp-news
31
+
32
+ This model is a fine-tuned version of [unicamp-dl/translation-en-pt-t5](https://huggingface.co/unicamp-dl/translation-en-pt-t5) on the news_commentary dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.2849
35
+ - Bleu: 39.1601
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 2e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 64
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 3
61
+ - mixed_precision_training: Native AMP
62
+
63
+ ### Training results
64
+
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.22.0
70
+ - Pytorch 1.12.1+cu113
71
+ - Datasets 2.4.0
72
+ - Tokenizers 0.12.1