VaggP commited on
Commit
1432afc
1 Parent(s): 9ffb08d

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:1
11
+ - loss:CosineSimilarityLoss
12
+ ---
13
+
14
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
15
+
16
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+ - **Model Type:** Sentence Transformer
22
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
23
+ - **Maximum Sequence Length:** 512 tokens
24
+ - **Output Dimensionality:** 768 tokens
25
+ - **Similarity Function:** Cosine Similarity
26
+ <!-- - **Training Dataset:** Unknown -->
27
+ <!-- - **Language:** Unknown -->
28
+ <!-- - **License:** Unknown -->
29
+
30
+ ### Model Sources
31
+
32
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
33
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
34
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
35
+
36
+ ### Full Model Architecture
37
+
38
+ ```
39
+ SentenceTransformer(
40
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
41
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
42
+ (2): Normalize()
43
+ )
44
+ ```
45
+
46
+ ## Usage
47
+
48
+ ### Direct Usage (Sentence Transformers)
49
+
50
+ First install the Sentence Transformers library:
51
+
52
+ ```bash
53
+ pip install -U sentence-transformers
54
+ ```
55
+
56
+ Then you can load this model and run inference.
57
+ ```python
58
+ from sentence_transformers import SentenceTransformer
59
+
60
+ # Download from the 🤗 Hub
61
+ model = SentenceTransformer("VaggP/fine-tuned-bge-base")
62
+ # Run inference
63
+ sentences = [
64
+ 'The weather is lovely today.',
65
+ "It's so sunny outside!",
66
+ 'He drove to the stadium.',
67
+ ]
68
+ embeddings = model.encode(sentences)
69
+ print(embeddings.shape)
70
+ # [3, 768]
71
+
72
+ # Get the similarity scores for the embeddings
73
+ similarities = model.similarity(embeddings, embeddings)
74
+ print(similarities.shape)
75
+ # [3, 3]
76
+ ```
77
+
78
+ <!--
79
+ ### Direct Usage (Transformers)
80
+
81
+ <details><summary>Click to see the direct usage in Transformers</summary>
82
+
83
+ </details>
84
+ -->
85
+
86
+ <!--
87
+ ### Downstream Usage (Sentence Transformers)
88
+
89
+ You can finetune this model on your own dataset.
90
+
91
+ <details><summary>Click to expand</summary>
92
+
93
+ </details>
94
+ -->
95
+
96
+ <!--
97
+ ### Out-of-Scope Use
98
+
99
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
100
+ -->
101
+
102
+ <!--
103
+ ## Bias, Risks and Limitations
104
+
105
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
106
+ -->
107
+
108
+ <!--
109
+ ### Recommendations
110
+
111
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
112
+ -->
113
+
114
+ ## Training Details
115
+
116
+ ### Training Dataset
117
+
118
+ #### Unnamed Dataset
119
+
120
+
121
+ * Size: 1 training samples
122
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
123
+ * Approximate statistics based on the first 1 samples:
124
+ | | sentence_0 | sentence_1 | label |
125
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
126
+ | type | string | string | float |
127
+ | details | <ul><li>min: 42 tokens</li><li>mean: 42.0 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 14.0 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
128
+ * Samples:
129
+ | sentence_0 | sentence_1 | label |
130
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------|
131
+ | <code> The misconception was failing to apply the correct order of operations (BIDMAS/PEMDAS), specifically not recognizing the need to group terms with addition before applying multiplication and subtraction.</code> | <code>Confuses the order of operations, believes addition comes before multiplication </code> | <code>1.0</code> |
132
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
133
+ ```json
134
+ {
135
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
136
+ }
137
+ ```
138
+
139
+ ### Training Hyperparameters
140
+ #### Non-Default Hyperparameters
141
+
142
+ - `per_device_train_batch_size`: 16
143
+ - `per_device_eval_batch_size`: 16
144
+ - `multi_dataset_batch_sampler`: round_robin
145
+
146
+ #### All Hyperparameters
147
+ <details><summary>Click to expand</summary>
148
+
149
+ - `overwrite_output_dir`: False
150
+ - `do_predict`: False
151
+ - `eval_strategy`: no
152
+ - `prediction_loss_only`: True
153
+ - `per_device_train_batch_size`: 16
154
+ - `per_device_eval_batch_size`: 16
155
+ - `per_gpu_train_batch_size`: None
156
+ - `per_gpu_eval_batch_size`: None
157
+ - `gradient_accumulation_steps`: 1
158
+ - `eval_accumulation_steps`: None
159
+ - `torch_empty_cache_steps`: None
160
+ - `learning_rate`: 5e-05
161
+ - `weight_decay`: 0.0
162
+ - `adam_beta1`: 0.9
163
+ - `adam_beta2`: 0.999
164
+ - `adam_epsilon`: 1e-08
165
+ - `max_grad_norm`: 1
166
+ - `num_train_epochs`: 3
167
+ - `max_steps`: -1
168
+ - `lr_scheduler_type`: linear
169
+ - `lr_scheduler_kwargs`: {}
170
+ - `warmup_ratio`: 0.0
171
+ - `warmup_steps`: 0
172
+ - `log_level`: passive
173
+ - `log_level_replica`: warning
174
+ - `log_on_each_node`: True
175
+ - `logging_nan_inf_filter`: True
176
+ - `save_safetensors`: True
177
+ - `save_on_each_node`: False
178
+ - `save_only_model`: False
179
+ - `restore_callback_states_from_checkpoint`: False
180
+ - `no_cuda`: False
181
+ - `use_cpu`: False
182
+ - `use_mps_device`: False
183
+ - `seed`: 42
184
+ - `data_seed`: None
185
+ - `jit_mode_eval`: False
186
+ - `use_ipex`: False
187
+ - `bf16`: False
188
+ - `fp16`: False
189
+ - `fp16_opt_level`: O1
190
+ - `half_precision_backend`: auto
191
+ - `bf16_full_eval`: False
192
+ - `fp16_full_eval`: False
193
+ - `tf32`: None
194
+ - `local_rank`: 0
195
+ - `ddp_backend`: None
196
+ - `tpu_num_cores`: None
197
+ - `tpu_metrics_debug`: False
198
+ - `debug`: []
199
+ - `dataloader_drop_last`: False
200
+ - `dataloader_num_workers`: 0
201
+ - `dataloader_prefetch_factor`: None
202
+ - `past_index`: -1
203
+ - `disable_tqdm`: False
204
+ - `remove_unused_columns`: True
205
+ - `label_names`: None
206
+ - `load_best_model_at_end`: False
207
+ - `ignore_data_skip`: False
208
+ - `fsdp`: []
209
+ - `fsdp_min_num_params`: 0
210
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
211
+ - `fsdp_transformer_layer_cls_to_wrap`: None
212
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
213
+ - `deepspeed`: None
214
+ - `label_smoothing_factor`: 0.0
215
+ - `optim`: adamw_torch
216
+ - `optim_args`: None
217
+ - `adafactor`: False
218
+ - `group_by_length`: False
219
+ - `length_column_name`: length
220
+ - `ddp_find_unused_parameters`: None
221
+ - `ddp_bucket_cap_mb`: None
222
+ - `ddp_broadcast_buffers`: False
223
+ - `dataloader_pin_memory`: True
224
+ - `dataloader_persistent_workers`: False
225
+ - `skip_memory_metrics`: True
226
+ - `use_legacy_prediction_loop`: False
227
+ - `push_to_hub`: False
228
+ - `resume_from_checkpoint`: None
229
+ - `hub_model_id`: None
230
+ - `hub_strategy`: every_save
231
+ - `hub_private_repo`: False
232
+ - `hub_always_push`: False
233
+ - `gradient_checkpointing`: False
234
+ - `gradient_checkpointing_kwargs`: None
235
+ - `include_inputs_for_metrics`: False
236
+ - `eval_do_concat_batches`: True
237
+ - `fp16_backend`: auto
238
+ - `push_to_hub_model_id`: None
239
+ - `push_to_hub_organization`: None
240
+ - `mp_parameters`:
241
+ - `auto_find_batch_size`: False
242
+ - `full_determinism`: False
243
+ - `torchdynamo`: None
244
+ - `ray_scope`: last
245
+ - `ddp_timeout`: 1800
246
+ - `torch_compile`: False
247
+ - `torch_compile_backend`: None
248
+ - `torch_compile_mode`: None
249
+ - `dispatch_batches`: None
250
+ - `split_batches`: None
251
+ - `include_tokens_per_second`: False
252
+ - `include_num_input_tokens_seen`: False
253
+ - `neftune_noise_alpha`: None
254
+ - `optim_target_modules`: None
255
+ - `batch_eval_metrics`: False
256
+ - `eval_on_start`: False
257
+ - `use_liger_kernel`: False
258
+ - `eval_use_gather_object`: False
259
+ - `batch_sampler`: batch_sampler
260
+ - `multi_dataset_batch_sampler`: round_robin
261
+
262
+ </details>
263
+
264
+ ### Framework Versions
265
+ - Python: 3.10.14
266
+ - Sentence Transformers: 3.2.0
267
+ - Transformers: 4.45.1
268
+ - PyTorch: 2.4.0
269
+ - Accelerate: 0.34.2
270
+ - Datasets: 3.0.1
271
+ - Tokenizers: 0.20.0
272
+
273
+ ## Citation
274
+
275
+ ### BibTeX
276
+
277
+ #### Sentence Transformers
278
+ ```bibtex
279
+ @inproceedings{reimers-2019-sentence-bert,
280
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
281
+ author = "Reimers, Nils and Gurevych, Iryna",
282
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
283
+ month = "11",
284
+ year = "2019",
285
+ publisher = "Association for Computational Linguistics",
286
+ url = "https://arxiv.org/abs/1908.10084",
287
+ }
288
+ ```
289
+
290
+ <!--
291
+ ## Glossary
292
+
293
+ *Clearly define terms in order to be accessible across audiences.*
294
+ -->
295
+
296
+ <!--
297
+ ## Model Card Authors
298
+
299
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
300
+ -->
301
+
302
+ <!--
303
+ ## Model Card Contact
304
+
305
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
306
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.45.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1b7bdb0b23a323c16001758538d0ee27614039030a34d5e7ef919bf51c8e0c4
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff