VMSI's picture
Upload 281 files
0690950
import tempfile
from typing import Union, List, Callable
import torch
import torchvision.transforms.functional
from PIL import Image
import gradio as gr
from modules.processing import StableDiffusionProcessing, Processed
from modules import scripts
from scripts.llul_hooker import Hooker, Upscaler, Downscaler
from scripts.llul_xyz import init_xyz
NAME = 'LLuL'
class Script(scripts.Script):
def __init__(self):
super().__init__()
self.last_hooker: Union[Hooker,None] = None
def title(self):
return NAME
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
mode = 'img2img' if is_img2img else 'txt2img'
id = lambda x: f'{NAME.lower()}-{mode}-{x}'
js = lambda s: f'globalThis["{id(s)}"]'
with gr.Group():
with gr.Accordion(NAME, open=False, elem_id=id('accordion')):
enabled = gr.Checkbox(label='Enabled', value=False)
with gr.Row():
weight = gr.Slider(minimum=-1, maximum=2, value=0.15, step=0.01, label='Weight')
multiply = gr.Slider(value=1, minimum=1, maximum=5, step=1, label='Multiplication (2^N)', elem_id=id('m'))
gr.HTML(elem_id=id('container'))
add_area_image = gr.Checkbox(value=True, label='Add the effective area to output images.')
with gr.Row():
use_mask = gr.Checkbox(value=False, label='Enable mask which scales the weight (black = 0.0, white = 1.0)')
mask = gr.File(interactive=True, label='Upload mask image', elem_id=id('mask'))
force_float = gr.Checkbox(label='Force convert half to float on interpolation (for some platforms)', value=False)
understand = gr.Checkbox(label='I know what I am doing.', value=False)
with gr.Column(visible=False) as g:
layers = gr.Textbox(label='Layers', value='OUT')
apply_to = gr.CheckboxGroup(choices=['Resblock', 'Transformer', 'S. Attn.', 'X. Attn.', 'OUT'], value=['OUT'], label='Apply to')
start_steps = gr.Slider(minimum=1, maximum=300, value=5, step=1, label='Start steps')
max_steps = gr.Slider(minimum=0, maximum=300, value=0, step=1, label='Max steps')
with gr.Row():
up = gr.Radio(choices=['Nearest', 'Bilinear', 'Bicubic'], value='Bilinear', label='Upscaling')
up_aa = gr.Checkbox(value=False, label='Enable AA for Upscaling.')
with gr.Row():
down = gr.Radio(choices=['Nearest', 'Bilinear', 'Bicubic', 'Area', 'Pooling Max', 'Pooling Avg'], value='Bilinear', label='Downscaling')
down_aa = gr.Checkbox(value=False, label='Enable AA for Downscaling.')
intp = gr.Radio(choices=['Lerp', 'SLerp'], value='Lerp', label='interpolation method')
understand.change(
lambda b: { g: gr.update(visible=b) },
inputs=[understand],
outputs=[
g # type: ignore
]
)
with gr.Row(visible=False):
sink = gr.HTML(value='') # to suppress error in javascript
x = js2py('x', id, js, sink)
y = js2py('y', id, js, sink)
return [
enabled,
multiply,
weight,
understand,
layers,
apply_to,
start_steps,
max_steps,
up,
up_aa,
down,
down_aa,
intp,
x,
y,
force_float,
use_mask,
mask,
add_area_image,
]
def process(
self,
p: StableDiffusionProcessing,
enabled: bool,
multiply: Union[int,float],
weight: float,
understand: bool,
layers: str,
apply_to: Union[List[str],str],
start_steps: Union[int,float],
max_steps: Union[int,float],
up: str,
up_aa: bool,
down: str,
down_aa: bool,
intp: str,
x: Union[str,None] = None,
y: Union[str,None] = None,
force_float = False,
use_mask: bool = False,
mask: Union[tempfile._TemporaryFileWrapper,None] = None,
add_area_image: bool = True, # for postprocess
):
if self.last_hooker is not None:
self.last_hooker.__exit__(None, None, None)
self.last_hooker = None
if not enabled:
return
if p.width < 128 or p.height < 128:
raise ValueError(f'Image size is too small to LLuL: {p.width}x{p.height}; expected >=128x128.')
multiply = 2 ** int(max(multiply, 0))
weight = float(weight)
if x is None or len(x) == 0:
x = str((p.width - p.width // multiply) // 2)
if y is None or len(y) == 0:
y = str((p.height - p.height // multiply) // 2)
if understand:
lays = (
None if len(layers) == 0 else
[x.strip() for x in layers.split(',')]
)
if isinstance(apply_to, str):
apply_to = [x.strip() for x in apply_to.split(',')]
apply_to = [x.lower() for x in apply_to]
start_steps = max(1, int(start_steps))
max_steps = max(1, [p.steps, int(max_steps)][1 <= max_steps])
up_fn = Upscaler(up, up_aa)
down_fn = Downscaler(down, down_aa)
intp = intp.lower()
else:
lays = ['OUT']
apply_to = ['out']
start_steps = 5
max_steps = int(p.steps)
up_fn = Upscaler('bilinear', aa=False)
down_fn = Downscaler('bilinear', aa=False)
intp = 'lerp'
xf = float(x)
yf = float(y)
mask_image = None
if use_mask and mask is not None:
# Can I read from passed tempfile._TemporaryFileWrapper???
mask_image = Image.open(mask.name).convert('L')
intp = 'lerp'
self.last_hooker = Hooker(
enabled=True,
multiply=int(multiply),
weight=weight,
layers=lays,
apply_to=apply_to,
start_steps=start_steps,
max_steps=max_steps,
up_fn=up_fn,
down_fn=down_fn,
intp=intp,
x=xf/p.width,
y=yf/p.height,
force_float=force_float,
mask_image=mask_image,
)
self.last_hooker.setup(p)
self.last_hooker.__enter__()
p.extra_generation_params.update({
f'{NAME} Enabled': enabled,
f'{NAME} Multiply': multiply,
f'{NAME} Weight': weight,
f'{NAME} Layers': lays,
f'{NAME} Apply to': apply_to,
f'{NAME} Start steps': start_steps,
f'{NAME} Max steps': max_steps,
f'{NAME} Upscaler': up_fn.name,
f'{NAME} Downscaler': down_fn.name,
f'{NAME} Interpolation': intp,
f'{NAME} x': x,
f'{NAME} y': y,
})
def postprocess(
self,
p: StableDiffusionProcessing,
proc: Processed,
enabled: bool,
multiply: Union[int,float],
weight: float,
understand: bool,
layers: str,
apply_to: Union[List[str],str],
start_steps: Union[int,float],
max_steps: Union[int,float],
up: str,
up_aa: bool,
down: str,
down_aa: bool,
intp: str,
x: Union[str,None] = None,
y: Union[str,None] = None,
force_float = False,
use_mask: bool = False,
mask: Union[tempfile._TemporaryFileWrapper,None] = None,
add_area_image: bool = True,
):
if not enabled:
return
multiply = int(2 ** int(max(multiply, 0)))
if x is None or len(x) == 0:
x = str((p.width - p.width // multiply) // 2)
if y is None or len(y) == 0:
y = str((p.height - p.height // multiply) // 2)
xi0 = int(x)
yi0 = int(y)
xi1 = xi0 + p.width // multiply
yi1 = yi0 + p.height // multiply
area = torch.zeros((1, p.height, p.width), dtype=torch.float)
area[:, yi0:yi1, xi0:xi1] = 1.0
pil_to_tensor = torchvision.transforms.functional.to_tensor
tensor_to_pil = torchvision.transforms.functional.to_pil_image
if use_mask and mask is not None:
# Can I read from passed tempfile._TemporaryFileWrapper???
mask_image = Image.open(mask.name).convert('L').resize((xi1 - xi0, yi1 - yi0), Image.BILINEAR)
mask_tensor = pil_to_tensor(mask_image)
# :: (1,h,w), each value is between 0 and 1
area[:, yi0:yi1, xi0:xi1] = mask_tensor
# (0.0, 1.0) -> (0.25, 1.0)
area.mul_(0.75).add_(0.25)
for image_index in range(len(proc.images)):
is_grid = image_index < proc.index_of_first_image
if is_grid:
continue
area_tensor = pil_to_tensor(proc.images[image_index])
area_tensor.mul_(area)
area_image = tensor_to_pil(area_tensor, mode='RGB')
i = image_index - proc.index_of_first_image
proc.images.append(area_image)
proc.all_prompts.append(proc.all_prompts[i])
proc.all_negative_prompts.append(proc.all_negative_prompts[i])
proc.all_seeds.append(proc.all_seeds[i])
proc.all_subseeds.append(proc.all_subseeds[i])
proc.infotexts.append(proc.infotexts[image_index])
def js2py(
name: str,
id: Callable[[str], str],
js: Callable[[str], str],
sink: gr.components.IOComponent,
):
v_set = gr.Button(elem_id=id(f'{name}_set'))
v = gr.Textbox(elem_id=id(name))
v_sink = gr.Textbox()
v_set.click(fn=None, _js=js(name), outputs=[v, v_sink])
v_sink.change(fn=None, _js=js(f'{name}_after'), outputs=[sink])
return v
init_xyz(Script)