VAZaytsev commited on
Commit
cc9a055
1 Parent(s): 3d331f5

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1518.86 +/- 58.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c4bc7e6256b8e955c9b05ed0e2d7d58b0b9093cde0259faf78b5d71511d55c5
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8c47bc1c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8c47bc1ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8c47bc1d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8c47bc1dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8c47bc1e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8c47bc1ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8c47bc1f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8c47b47040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8c47b470d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8c47b47160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8c47b471f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8c47b47280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f8c47bbd7b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678177252419732648,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADqMnT+p+g4/iFyJvcwm2z+WSXE/NBXrPypGUj9Qela/hMp2PmtXeT+n/LA/1k8mvkiThT9zf5c/hHOzv+S7iD/GDYw/7MBjv9tPAz/roJ49VYtLv7x1xb+haAU/cm2uPfX8QL8JFy4/oCqYPjKPKz8w68c/Ab4/PjnLmT6fPOA/Cj0kPzHQnD/pios/eEqWv030hr1UUQm/g/ujPy/M8b7ePLo/qkquPXeXiL+4z3g/hlNAv+iYJL8IU9A+tGCAPRwQhr/iJ8i/vZkoP8hb9L71/EC/CRcuP6AqmD4yjys/pORSPpkacT5t04Q+jXgYPgrLir9iJHc+4MGXvj7XCD29ese++CAKPzb6lT+JCaU+b8o8P0XDD79dC3Y+ScQfv38qxr9SGKY+JKD8voWkBL9ATgI/dh9mP00P1T6+1pW/98qpPwkXLj+gKpg+Mo8rP0zIuD/aAQY/Si7avB1iWT/Afns+4Hyrv4aipT6VZfq+dnafPQH1v7/kbjs/VA3kPlNbfT8mdKu/GcBrv4bWhL2P29m9lHySPij2377of/6++FeBv9LthT/mKoc/u2Anv/X8QL8JFy4/oCqYPjKPKz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC3rYM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwy/zvQAAAACVHP6/AAAAAIZSq70AAAAAO2bmPwAAAADUjog9AAAAAES46j8AAAAAyxiAvQAAAADzbf6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuVzwtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJS1qDwAAAAA1lQBwAAAAABo+ee9AAAAADXG/j8AAAAADxKIvAAAAAB/y94/AAAAABuTjb0AAAAAm+jevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKY0bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBPk809AAAAAAg88r8AAAAA8foCPgAAAADyKuE/AAAAABV8+b0AAAAAgPzrPwAAAAAxKMe8AAAAACdS2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtcxG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiqPqPQAAAAAaou6/AAAAAPoWbz0AAAAAbj3jPwAAAAD/XK69AAAAAKYZ9T8AAAAAg/31vQAAAABFDPi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbFNSAH3USMAWyUTegDjAF0lEdAsAfUWvbGm3V9lChoBkdAnh4fLTx5LWgHTegDaAhHQLAL+k1/DtR1fZQoaAZHQJ4PSF/QSjBoB03oA2gIR0CwDDxOLzf8dX2UKGgGR0CeKgPCVKPGaAdN6ANoCEdAsA2P8R+SbHV9lChoBkdAntl4mG/N7mgHTegDaAhHQLAPQ0DU3GZ1fZQoaAZHQKDX6F7laKVoB03oA2gIR0CwFZX/HYHxdX2UKGgGR0CgBliXpnpTaAdN6ANoCEdAsBX7JlrdnHV9lChoBkdAoOb8hcJMQGgHTegDaAhHQLAXWWjXWe91fZQoaAZHQJ/LzP8hs69oB03oA2gIR0CwGPn003wTdX2UKGgGR0CgkSrlNlAeaAdN6ANoCEdAsB0jDBMzuXV9lChoBkdAoT0dIwudw2gHTegDaAhHQLAdagfU4Jh1fZQoaAZHQKFP7RE4NqhoB03oA2gIR0CwHr3BLwnZdX2UKGgGR0CgMCK+BYmtaAdN6ANoCEdAsCCcVBUrCnV9lChoBkdAob2tuR9w32gHTegDaAhHQLAmqaaTfSB1fZQoaAZHQKDtQuscQy1oB03oA2gIR0CwJu5IczZZdX2UKGgGR0ChDxlsP8Q7aAdN6ANoCEdAsCg+9EkSmXV9lChoBkdAoTBjkGRmsmgHTegDaAhHQLApzj8k2P11fZQoaAZHQKFZzG3F1jloB03oA2gIR0CwLeCuMdcTdX2UKGgGR0CgwL1Rk3CLaAdN6ANoCEdAsC4j3oLXtnV9lChoBkdAnyWaKLsKLWgHTegDaAhHQLAvc9Brvb51fZQoaAZHQKHumD8tPHloB03oA2gIR0CwMc7SE12rdX2UKGgGR0ChYFEjxCpnaAdN6ANoCEdAsDdmRaHKwXV9lChoBkdAoTyR9w3o92gHTegDaAhHQLA3plRgqmV1fZQoaAZHQKDy2XkYGdJoB03oA2gIR0CwOPlK5CnhdX2UKGgGR0CfzUoZAIIGaAdN6ANoCEdAsDqifTTfBXV9lChoBkdAnfrg2MsH0WgHTegDaAhHQLA+t1JUYKp1fZQoaAZHQJywcslLOA1oB03oA2gIR0CwPvjMeOn3dX2UKGgGR0CddTrVvuPWaAdN6ANoCEdAsECpVea8YnV9lChoBkdAoFsOnwXqJWgHTegDaAhHQLBDT3/givB1fZQoaAZHQKFPelC1JDpoB03oA2gIR0CwSGP0Zm7KdX2UKGgGR0Cg8Q/8dgfEaAdN6ANoCEdAsEioXQ+lj3V9lChoBkdAobaDbxmTT2gHTegDaAhHQLBJ/E3bVSZ1fZQoaAZHQKFv90A93bFoB03oA2gIR0CwS6nrMTvidX2UKGgGR0ChXVUCih38aAdN6ANoCEdAsFA69du50HV9lChoBkdAoUkSQDFId2gHTegDaAhHQLBQovM8ox51fZQoaAZHQJ9hqEPDpC9oB03oA2gIR0CwUtKFAVwhdX2UKGgGR0ChIEazeGfxaAdN6ANoCEdAsFV3pcHGCXV9lChoBkdAoVmHqiXY2GgHTegDaAhHQLBZlTkyULV1fZQoaAZHQKB7m5lOGj9oB03oA2gIR0CwWdRIjGDMdX2UKGgGR0CgoVhx5s0paAdN6ANoCEdAsFsmnivPknV9lChoBkdAoFbqHEdeY2gHTegDaAhHQLBcywblzU91fZQoaAZHQJ6X/BxgiNdoB03oA2gIR0CwYaoFeOXFdX2UKGgGR0Ce4AAVfu1GaAdN6ANoCEdAsGIUSFoL5XV9lChoBkdAoHXPAymALGgHTegDaAhHQLBkO1p0wJx1fZQoaAZHQKA33hqCYkVoB03oA2gIR0CwZiX3ta6jdX2UKGgGR0CggB06o2n9aAdN6ANoCEdAsGo2+mFajnV9lChoBkdAoGYbfm9xqGgHTegDaAhHQLBqeOpbUw11fZQoaAZHQKCTSbExZdRoB03oA2gIR0Cwa9Y2S+xodX2UKGgGR0Cf2ZweNkvsaAdN6ANoCEdAsG1uwV0tAnV9lChoBkdAoG1VOsT37GgHTegDaAhHQLBzfpB5X2d1fZQoaAZHQKBn2bKifxtoB03oA2gIR0CwdA55eJHidX2UKGgGR0ChZ+JY1YQraAdN6ANoCEdAsHZ9ggHNYHV9lChoBkdAoPyaWX1J2GgHTegDaAhHQLB5UemvW6N1fZQoaAZHQKDdaKu0TlFoB03oA2gIR0CwfayLAHmjdX2UKGgGR0CgrKRNIsiCaAdN6ANoCEdAsH3vjjrAxnV9lChoBkdAn9SuRoysS2gHTegDaAhHQLB/RFxGUfR1fZQoaAZHQKBkMNWEK3NoB03oA2gIR0CwgObYsd1ddX2UKGgGR0CeM5H9WIXTaAdN6ANoCEdAsIamvB7/oHV9lChoBkdAnziNK28Zk2gHTegDaAhHQLCHFwhW5pd1fZQoaAZHQJ0AINYr8SBoB03oA2gIR0CwiP0kKNQ1dX2UKGgGR0CfCGjcEeQuaAdN6ANoCEdAsIqyGGmDUXV9lChoBkdAnWmP2GqPwWgHTegDaAhHQLCO5kWAPNF1fZQoaAZHQJ6214t6HCZoB03oA2gIR0CwjycJY1YRdX2UKGgGR0Cf0s7l7tzCaAdN6ANoCEdAsJB9RIjGDXV9lChoBkdAnWzmUKRdQmgHTegDaAhHQLCSFUtZmqZ1fZQoaAZHQJuuv+xW1dBoB03oA2gIR0CwmHOOS4e+dX2UKGgGR0CcLZ9h7VriaAdN6ANoCEdAsJi5WfbsW3V9lChoBkdAm6syuIRAbGgHTegDaAhHQLCaALGrCFd1fZQoaAZHQJqndQdjoZBoB03oA2gIR0Cwm5K19fCzdX2UKGgGR0CemgAP/aQFaAdN6ANoCEdAsJ/GTX8O1HV9lChoBkdAnpemd7OVxGgHTegDaAhHQLCgByN4qw11fZQoaAZHQJ9nCBPKuCBoB03oA2gIR0CwoV0b1h9cdX2UKGgGR0CcXPnVG0/oaAdN6ANoCEdAsKNlZha1TnV9lChoBkdAlsRvznRsuWgHTegDaAhHQLCpT+L3sX11fZQoaAZHQJpShZha1TloB03oA2gIR0CwqY+pfhMrdX2UKGgGR0CZhNAy2x6faAdN6ANoCEdAsKrV/y5I6XV9lChoBkdAmDnetGNJe2gHTegDaAhHQLCsdzQeFL51fZQoaAZHQJtt1gfEGaBoB03oA2gIR0CwsIbWRRuTdX2UKGgGR0CZNsNCqp97aAdN6ANoCEdAsLDLim2srHV9lChoBkdAnEx3qzJIUmgHTegDaAhHQLCyLJ79hql1fZQoaAZHQJkS8371qWVoB03oA2gIR0CwtKvMKTjedX2UKGgGR0CXSxYk3S8baAdN6ANoCEdAsLn5Pl+3IHV9lChoBkdAlhdKoIfKZGgHTegDaAhHQLC6OVT72td1fZQoaAZHQJfIL9kz41xoB03oA2gIR0Cwu4TVpbljdX2UKGgGR0CaYkYlpoK2aAdN6ANoCEdAsL0fasZHeHV9lChoBkdAmh9YQ8OkL2gHTegDaAhHQLDBNt4A0bd1fZQoaAZHQJnFsTHsC1ZoB03oA2gIR0CwwXqvvBrOdX2UKGgGR0CbELFI/Z/TaAdN6ANoCEdAsMNhrN4Z/HV9lChoBkdAnUPFBt1p02gHTegDaAhHQLDGAhY/3WZ1fZQoaAZHQJ55GvxH5JtoB03oA2gIR0CwysiyyD7JdX2UKGgGR0CdrU8YQ8OkaAdN6ANoCEdAsMsSKDTScHV9lChoBkdAmyP4yTINmWgHTegDaAhHQLDMXv73wkR1fZQoaAZHQJ1/QdT5wfhoB03oA2gIR0CwzfYNmUW3dX2UKGgGR0CarX6XSjQBaAdN6ANoCEdAsNIYb2lEZ3V9lChoBkdAnEtAUtZmqmgHTegDaAhHQLDSg+Yc/+t1fZQoaAZHQJsLQWXTmXBoB03oA2gIR0Cw1KT8+A3DdX2UKGgGR0Cau6fsu3+daAdN6ANoCEdAsNdS+K0laHV9lChoBkdAmKbmxyGSIWgHTegDaAhHQLDbkQF9roJ1fZQoaAZHQJYAvAAQxvhoB03oA2gIR0Cw29baM72ddX2UKGgGR0CYEbs41gpjaAdN6ANoCEdAsN02/tY0VXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b060537f9a918c7fb3f10c74f201089cdd84acd15423b91d1a0caeb50de6ec7
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72947e639da3ed32ce22e4e5435eb5f5ddb38e2c9d339d9b2f9dab97d21e9358
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8c47bc1c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8c47bc1ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8c47bc1d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8c47bc1dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f8c47bc1e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f8c47bc1ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8c47bc1f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8c47b47040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8c47b470d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8c47b47160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8c47b471f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8c47b47280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8c47bbd7b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678177252419732648, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADqMnT+p+g4/iFyJvcwm2z+WSXE/NBXrPypGUj9Qela/hMp2PmtXeT+n/LA/1k8mvkiThT9zf5c/hHOzv+S7iD/GDYw/7MBjv9tPAz/roJ49VYtLv7x1xb+haAU/cm2uPfX8QL8JFy4/oCqYPjKPKz8w68c/Ab4/PjnLmT6fPOA/Cj0kPzHQnD/pios/eEqWv030hr1UUQm/g/ujPy/M8b7ePLo/qkquPXeXiL+4z3g/hlNAv+iYJL8IU9A+tGCAPRwQhr/iJ8i/vZkoP8hb9L71/EC/CRcuP6AqmD4yjys/pORSPpkacT5t04Q+jXgYPgrLir9iJHc+4MGXvj7XCD29ese++CAKPzb6lT+JCaU+b8o8P0XDD79dC3Y+ScQfv38qxr9SGKY+JKD8voWkBL9ATgI/dh9mP00P1T6+1pW/98qpPwkXLj+gKpg+Mo8rP0zIuD/aAQY/Si7avB1iWT/Afns+4Hyrv4aipT6VZfq+dnafPQH1v7/kbjs/VA3kPlNbfT8mdKu/GcBrv4bWhL2P29m9lHySPij2377of/6++FeBv9LthT/mKoc/u2Anv/X8QL8JFy4/oCqYPjKPKz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC3rYM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwy/zvQAAAACVHP6/AAAAAIZSq70AAAAAO2bmPwAAAADUjog9AAAAAES46j8AAAAAyxiAvQAAAADzbf6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuVzwtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJS1qDwAAAAA1lQBwAAAAABo+ee9AAAAADXG/j8AAAAADxKIvAAAAAB/y94/AAAAABuTjb0AAAAAm+jevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKY0bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBPk809AAAAAAg88r8AAAAA8foCPgAAAADyKuE/AAAAABV8+b0AAAAAgPzrPwAAAAAxKMe8AAAAACdS2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtcxG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiqPqPQAAAAAaou6/AAAAAPoWbz0AAAAAbj3jPwAAAAD/XK69AAAAAKYZ9T8AAAAAg/31vQAAAABFDPi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbFNSAH3USMAWyUTegDjAF0lEdAsAfUWvbGm3V9lChoBkdAnh4fLTx5LWgHTegDaAhHQLAL+k1/DtR1fZQoaAZHQJ4PSF/QSjBoB03oA2gIR0CwDDxOLzf8dX2UKGgGR0CeKgPCVKPGaAdN6ANoCEdAsA2P8R+SbHV9lChoBkdAntl4mG/N7mgHTegDaAhHQLAPQ0DU3GZ1fZQoaAZHQKDX6F7laKVoB03oA2gIR0CwFZX/HYHxdX2UKGgGR0CgBliXpnpTaAdN6ANoCEdAsBX7JlrdnHV9lChoBkdAoOb8hcJMQGgHTegDaAhHQLAXWWjXWe91fZQoaAZHQJ/LzP8hs69oB03oA2gIR0CwGPn003wTdX2UKGgGR0CgkSrlNlAeaAdN6ANoCEdAsB0jDBMzuXV9lChoBkdAoT0dIwudw2gHTegDaAhHQLAdagfU4Jh1fZQoaAZHQKFP7RE4NqhoB03oA2gIR0CwHr3BLwnZdX2UKGgGR0CgMCK+BYmtaAdN6ANoCEdAsCCcVBUrCnV9lChoBkdAob2tuR9w32gHTegDaAhHQLAmqaaTfSB1fZQoaAZHQKDtQuscQy1oB03oA2gIR0CwJu5IczZZdX2UKGgGR0ChDxlsP8Q7aAdN6ANoCEdAsCg+9EkSmXV9lChoBkdAoTBjkGRmsmgHTegDaAhHQLApzj8k2P11fZQoaAZHQKFZzG3F1jloB03oA2gIR0CwLeCuMdcTdX2UKGgGR0CgwL1Rk3CLaAdN6ANoCEdAsC4j3oLXtnV9lChoBkdAnyWaKLsKLWgHTegDaAhHQLAvc9Brvb51fZQoaAZHQKHumD8tPHloB03oA2gIR0CwMc7SE12rdX2UKGgGR0ChYFEjxCpnaAdN6ANoCEdAsDdmRaHKwXV9lChoBkdAoTyR9w3o92gHTegDaAhHQLA3plRgqmV1fZQoaAZHQKDy2XkYGdJoB03oA2gIR0CwOPlK5CnhdX2UKGgGR0CfzUoZAIIGaAdN6ANoCEdAsDqifTTfBXV9lChoBkdAnfrg2MsH0WgHTegDaAhHQLA+t1JUYKp1fZQoaAZHQJywcslLOA1oB03oA2gIR0CwPvjMeOn3dX2UKGgGR0CddTrVvuPWaAdN6ANoCEdAsECpVea8YnV9lChoBkdAoFsOnwXqJWgHTegDaAhHQLBDT3/givB1fZQoaAZHQKFPelC1JDpoB03oA2gIR0CwSGP0Zm7KdX2UKGgGR0Cg8Q/8dgfEaAdN6ANoCEdAsEioXQ+lj3V9lChoBkdAobaDbxmTT2gHTegDaAhHQLBJ/E3bVSZ1fZQoaAZHQKFv90A93bFoB03oA2gIR0CwS6nrMTvidX2UKGgGR0ChXVUCih38aAdN6ANoCEdAsFA69du50HV9lChoBkdAoUkSQDFId2gHTegDaAhHQLBQovM8ox51fZQoaAZHQJ9hqEPDpC9oB03oA2gIR0CwUtKFAVwhdX2UKGgGR0ChIEazeGfxaAdN6ANoCEdAsFV3pcHGCXV9lChoBkdAoVmHqiXY2GgHTegDaAhHQLBZlTkyULV1fZQoaAZHQKB7m5lOGj9oB03oA2gIR0CwWdRIjGDMdX2UKGgGR0CgoVhx5s0paAdN6ANoCEdAsFsmnivPknV9lChoBkdAoFbqHEdeY2gHTegDaAhHQLBcywblzU91fZQoaAZHQJ6X/BxgiNdoB03oA2gIR0CwYaoFeOXFdX2UKGgGR0Ce4AAVfu1GaAdN6ANoCEdAsGIUSFoL5XV9lChoBkdAoHXPAymALGgHTegDaAhHQLBkO1p0wJx1fZQoaAZHQKA33hqCYkVoB03oA2gIR0CwZiX3ta6jdX2UKGgGR0CggB06o2n9aAdN6ANoCEdAsGo2+mFajnV9lChoBkdAoGYbfm9xqGgHTegDaAhHQLBqeOpbUw11fZQoaAZHQKCTSbExZdRoB03oA2gIR0Cwa9Y2S+xodX2UKGgGR0Cf2ZweNkvsaAdN6ANoCEdAsG1uwV0tAnV9lChoBkdAoG1VOsT37GgHTegDaAhHQLBzfpB5X2d1fZQoaAZHQKBn2bKifxtoB03oA2gIR0CwdA55eJHidX2UKGgGR0ChZ+JY1YQraAdN6ANoCEdAsHZ9ggHNYHV9lChoBkdAoPyaWX1J2GgHTegDaAhHQLB5UemvW6N1fZQoaAZHQKDdaKu0TlFoB03oA2gIR0CwfayLAHmjdX2UKGgGR0CgrKRNIsiCaAdN6ANoCEdAsH3vjjrAxnV9lChoBkdAn9SuRoysS2gHTegDaAhHQLB/RFxGUfR1fZQoaAZHQKBkMNWEK3NoB03oA2gIR0CwgObYsd1ddX2UKGgGR0CeM5H9WIXTaAdN6ANoCEdAsIamvB7/oHV9lChoBkdAnziNK28Zk2gHTegDaAhHQLCHFwhW5pd1fZQoaAZHQJ0AINYr8SBoB03oA2gIR0CwiP0kKNQ1dX2UKGgGR0CfCGjcEeQuaAdN6ANoCEdAsIqyGGmDUXV9lChoBkdAnWmP2GqPwWgHTegDaAhHQLCO5kWAPNF1fZQoaAZHQJ6214t6HCZoB03oA2gIR0CwjycJY1YRdX2UKGgGR0Cf0s7l7tzCaAdN6ANoCEdAsJB9RIjGDXV9lChoBkdAnWzmUKRdQmgHTegDaAhHQLCSFUtZmqZ1fZQoaAZHQJuuv+xW1dBoB03oA2gIR0CwmHOOS4e+dX2UKGgGR0CcLZ9h7VriaAdN6ANoCEdAsJi5WfbsW3V9lChoBkdAm6syuIRAbGgHTegDaAhHQLCaALGrCFd1fZQoaAZHQJqndQdjoZBoB03oA2gIR0Cwm5K19fCzdX2UKGgGR0CemgAP/aQFaAdN6ANoCEdAsJ/GTX8O1HV9lChoBkdAnpemd7OVxGgHTegDaAhHQLCgByN4qw11fZQoaAZHQJ9nCBPKuCBoB03oA2gIR0CwoV0b1h9cdX2UKGgGR0CcXPnVG0/oaAdN6ANoCEdAsKNlZha1TnV9lChoBkdAlsRvznRsuWgHTegDaAhHQLCpT+L3sX11fZQoaAZHQJpShZha1TloB03oA2gIR0CwqY+pfhMrdX2UKGgGR0CZhNAy2x6faAdN6ANoCEdAsKrV/y5I6XV9lChoBkdAmDnetGNJe2gHTegDaAhHQLCsdzQeFL51fZQoaAZHQJtt1gfEGaBoB03oA2gIR0CwsIbWRRuTdX2UKGgGR0CZNsNCqp97aAdN6ANoCEdAsLDLim2srHV9lChoBkdAnEx3qzJIUmgHTegDaAhHQLCyLJ79hql1fZQoaAZHQJkS8371qWVoB03oA2gIR0CwtKvMKTjedX2UKGgGR0CXSxYk3S8baAdN6ANoCEdAsLn5Pl+3IHV9lChoBkdAlhdKoIfKZGgHTegDaAhHQLC6OVT72td1fZQoaAZHQJfIL9kz41xoB03oA2gIR0Cwu4TVpbljdX2UKGgGR0CaYkYlpoK2aAdN6ANoCEdAsL0fasZHeHV9lChoBkdAmh9YQ8OkL2gHTegDaAhHQLDBNt4A0bd1fZQoaAZHQJnFsTHsC1ZoB03oA2gIR0CwwXqvvBrOdX2UKGgGR0CbELFI/Z/TaAdN6ANoCEdAsMNhrN4Z/HV9lChoBkdAnUPFBt1p02gHTegDaAhHQLDGAhY/3WZ1fZQoaAZHQJ55GvxH5JtoB03oA2gIR0CwysiyyD7JdX2UKGgGR0CdrU8YQ8OkaAdN6ANoCEdAsMsSKDTScHV9lChoBkdAmyP4yTINmWgHTegDaAhHQLDMXv73wkR1fZQoaAZHQJ1/QdT5wfhoB03oA2gIR0CwzfYNmUW3dX2UKGgGR0CarX6XSjQBaAdN6ANoCEdAsNIYb2lEZ3V9lChoBkdAnEtAUtZmqmgHTegDaAhHQLDSg+Yc/+t1fZQoaAZHQJsLQWXTmXBoB03oA2gIR0Cw1KT8+A3DdX2UKGgGR0Cau6fsu3+daAdN6ANoCEdAsNdS+K0laHV9lChoBkdAmKbmxyGSIWgHTegDaAhHQLDbkQF9roJ1fZQoaAZHQJYAvAAQxvhoB03oA2gIR0Cw29baM72ddX2UKGgGR0CYEbs41gpjaAdN6ANoCEdAsN02/tY0VXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6e4bb31617cd2114f25e37f5bdbbda23b9d8eec71ea981f47329222c064a3f7
3
+ size 1166791
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1518.8610639431688, "std_reward": 58.26542559158774, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T09:34:45.396649"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:134305d5269e0336a4accd02f6622189aeaf46daba1e3a28090987968d0f4843
3
+ size 2136