Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1518.86 +/- 58.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c4bc7e6256b8e955c9b05ed0e2d7d58b0b9093cde0259faf78b5d71511d55c5
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8c47bc1c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8c47bc1ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8c47bc1d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8c47bc1dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8c47bc1e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8c47bc1ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8c47bc1f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8c47b47040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8c47b470d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8c47b47160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8c47b471f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8c47b47280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f8c47bbd7b0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678177252419732648,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADqMnT+p+g4/iFyJvcwm2z+WSXE/NBXrPypGUj9Qela/hMp2PmtXeT+n/LA/1k8mvkiThT9zf5c/hHOzv+S7iD/GDYw/7MBjv9tPAz/roJ49VYtLv7x1xb+haAU/cm2uPfX8QL8JFy4/oCqYPjKPKz8w68c/Ab4/PjnLmT6fPOA/Cj0kPzHQnD/pios/eEqWv030hr1UUQm/g/ujPy/M8b7ePLo/qkquPXeXiL+4z3g/hlNAv+iYJL8IU9A+tGCAPRwQhr/iJ8i/vZkoP8hb9L71/EC/CRcuP6AqmD4yjys/pORSPpkacT5t04Q+jXgYPgrLir9iJHc+4MGXvj7XCD29ese++CAKPzb6lT+JCaU+b8o8P0XDD79dC3Y+ScQfv38qxr9SGKY+JKD8voWkBL9ATgI/dh9mP00P1T6+1pW/98qpPwkXLj+gKpg+Mo8rP0zIuD/aAQY/Si7avB1iWT/Afns+4Hyrv4aipT6VZfq+dnafPQH1v7/kbjs/VA3kPlNbfT8mdKu/GcBrv4bWhL2P29m9lHySPij2377of/6++FeBv9LthT/mKoc/u2Anv/X8QL8JFy4/oCqYPjKPKz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC3rYM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwy/zvQAAAACVHP6/AAAAAIZSq70AAAAAO2bmPwAAAADUjog9AAAAAES46j8AAAAAyxiAvQAAAADzbf6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuVzwtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJS1qDwAAAAA1lQBwAAAAABo+ee9AAAAADXG/j8AAAAADxKIvAAAAAB/y94/AAAAABuTjb0AAAAAm+jevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKY0bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBPk809AAAAAAg88r8AAAAA8foCPgAAAADyKuE/AAAAABV8+b0AAAAAgPzrPwAAAAAxKMe8AAAAACdS2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtcxG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiqPqPQAAAAAaou6/AAAAAPoWbz0AAAAAbj3jPwAAAAD/XK69AAAAAKYZ9T8AAAAAg/31vQAAAABFDPi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbFNSAH3USMAWyUTegDjAF0lEdAsAfUWvbGm3V9lChoBkdAnh4fLTx5LWgHTegDaAhHQLAL+k1/DtR1fZQoaAZHQJ4PSF/QSjBoB03oA2gIR0CwDDxOLzf8dX2UKGgGR0CeKgPCVKPGaAdN6ANoCEdAsA2P8R+SbHV9lChoBkdAntl4mG/N7mgHTegDaAhHQLAPQ0DU3GZ1fZQoaAZHQKDX6F7laKVoB03oA2gIR0CwFZX/HYHxdX2UKGgGR0CgBliXpnpTaAdN6ANoCEdAsBX7JlrdnHV9lChoBkdAoOb8hcJMQGgHTegDaAhHQLAXWWjXWe91fZQoaAZHQJ/LzP8hs69oB03oA2gIR0CwGPn003wTdX2UKGgGR0CgkSrlNlAeaAdN6ANoCEdAsB0jDBMzuXV9lChoBkdAoT0dIwudw2gHTegDaAhHQLAdagfU4Jh1fZQoaAZHQKFP7RE4NqhoB03oA2gIR0CwHr3BLwnZdX2UKGgGR0CgMCK+BYmtaAdN6ANoCEdAsCCcVBUrCnV9lChoBkdAob2tuR9w32gHTegDaAhHQLAmqaaTfSB1fZQoaAZHQKDtQuscQy1oB03oA2gIR0CwJu5IczZZdX2UKGgGR0ChDxlsP8Q7aAdN6ANoCEdAsCg+9EkSmXV9lChoBkdAoTBjkGRmsmgHTegDaAhHQLApzj8k2P11fZQoaAZHQKFZzG3F1jloB03oA2gIR0CwLeCuMdcTdX2UKGgGR0CgwL1Rk3CLaAdN6ANoCEdAsC4j3oLXtnV9lChoBkdAnyWaKLsKLWgHTegDaAhHQLAvc9Brvb51fZQoaAZHQKHumD8tPHloB03oA2gIR0CwMc7SE12rdX2UKGgGR0ChYFEjxCpnaAdN6ANoCEdAsDdmRaHKwXV9lChoBkdAoTyR9w3o92gHTegDaAhHQLA3plRgqmV1fZQoaAZHQKDy2XkYGdJoB03oA2gIR0CwOPlK5CnhdX2UKGgGR0CfzUoZAIIGaAdN6ANoCEdAsDqifTTfBXV9lChoBkdAnfrg2MsH0WgHTegDaAhHQLA+t1JUYKp1fZQoaAZHQJywcslLOA1oB03oA2gIR0CwPvjMeOn3dX2UKGgGR0CddTrVvuPWaAdN6ANoCEdAsECpVea8YnV9lChoBkdAoFsOnwXqJWgHTegDaAhHQLBDT3/givB1fZQoaAZHQKFPelC1JDpoB03oA2gIR0CwSGP0Zm7KdX2UKGgGR0Cg8Q/8dgfEaAdN6ANoCEdAsEioXQ+lj3V9lChoBkdAobaDbxmTT2gHTegDaAhHQLBJ/E3bVSZ1fZQoaAZHQKFv90A93bFoB03oA2gIR0CwS6nrMTvidX2UKGgGR0ChXVUCih38aAdN6ANoCEdAsFA69du50HV9lChoBkdAoUkSQDFId2gHTegDaAhHQLBQovM8ox51fZQoaAZHQJ9hqEPDpC9oB03oA2gIR0CwUtKFAVwhdX2UKGgGR0ChIEazeGfxaAdN6ANoCEdAsFV3pcHGCXV9lChoBkdAoVmHqiXY2GgHTegDaAhHQLBZlTkyULV1fZQoaAZHQKB7m5lOGj9oB03oA2gIR0CwWdRIjGDMdX2UKGgGR0CgoVhx5s0paAdN6ANoCEdAsFsmnivPknV9lChoBkdAoFbqHEdeY2gHTegDaAhHQLBcywblzU91fZQoaAZHQJ6X/BxgiNdoB03oA2gIR0CwYaoFeOXFdX2UKGgGR0Ce4AAVfu1GaAdN6ANoCEdAsGIUSFoL5XV9lChoBkdAoHXPAymALGgHTegDaAhHQLBkO1p0wJx1fZQoaAZHQKA33hqCYkVoB03oA2gIR0CwZiX3ta6jdX2UKGgGR0CggB06o2n9aAdN6ANoCEdAsGo2+mFajnV9lChoBkdAoGYbfm9xqGgHTegDaAhHQLBqeOpbUw11fZQoaAZHQKCTSbExZdRoB03oA2gIR0Cwa9Y2S+xodX2UKGgGR0Cf2ZweNkvsaAdN6ANoCEdAsG1uwV0tAnV9lChoBkdAoG1VOsT37GgHTegDaAhHQLBzfpB5X2d1fZQoaAZHQKBn2bKifxtoB03oA2gIR0CwdA55eJHidX2UKGgGR0ChZ+JY1YQraAdN6ANoCEdAsHZ9ggHNYHV9lChoBkdAoPyaWX1J2GgHTegDaAhHQLB5UemvW6N1fZQoaAZHQKDdaKu0TlFoB03oA2gIR0CwfayLAHmjdX2UKGgGR0CgrKRNIsiCaAdN6ANoCEdAsH3vjjrAxnV9lChoBkdAn9SuRoysS2gHTegDaAhHQLB/RFxGUfR1fZQoaAZHQKBkMNWEK3NoB03oA2gIR0CwgObYsd1ddX2UKGgGR0CeM5H9WIXTaAdN6ANoCEdAsIamvB7/oHV9lChoBkdAnziNK28Zk2gHTegDaAhHQLCHFwhW5pd1fZQoaAZHQJ0AINYr8SBoB03oA2gIR0CwiP0kKNQ1dX2UKGgGR0CfCGjcEeQuaAdN6ANoCEdAsIqyGGmDUXV9lChoBkdAnWmP2GqPwWgHTegDaAhHQLCO5kWAPNF1fZQoaAZHQJ6214t6HCZoB03oA2gIR0CwjycJY1YRdX2UKGgGR0Cf0s7l7tzCaAdN6ANoCEdAsJB9RIjGDXV9lChoBkdAnWzmUKRdQmgHTegDaAhHQLCSFUtZmqZ1fZQoaAZHQJuuv+xW1dBoB03oA2gIR0CwmHOOS4e+dX2UKGgGR0CcLZ9h7VriaAdN6ANoCEdAsJi5WfbsW3V9lChoBkdAm6syuIRAbGgHTegDaAhHQLCaALGrCFd1fZQoaAZHQJqndQdjoZBoB03oA2gIR0Cwm5K19fCzdX2UKGgGR0CemgAP/aQFaAdN6ANoCEdAsJ/GTX8O1HV9lChoBkdAnpemd7OVxGgHTegDaAhHQLCgByN4qw11fZQoaAZHQJ9nCBPKuCBoB03oA2gIR0CwoV0b1h9cdX2UKGgGR0CcXPnVG0/oaAdN6ANoCEdAsKNlZha1TnV9lChoBkdAlsRvznRsuWgHTegDaAhHQLCpT+L3sX11fZQoaAZHQJpShZha1TloB03oA2gIR0CwqY+pfhMrdX2UKGgGR0CZhNAy2x6faAdN6ANoCEdAsKrV/y5I6XV9lChoBkdAmDnetGNJe2gHTegDaAhHQLCsdzQeFL51fZQoaAZHQJtt1gfEGaBoB03oA2gIR0CwsIbWRRuTdX2UKGgGR0CZNsNCqp97aAdN6ANoCEdAsLDLim2srHV9lChoBkdAnEx3qzJIUmgHTegDaAhHQLCyLJ79hql1fZQoaAZHQJkS8371qWVoB03oA2gIR0CwtKvMKTjedX2UKGgGR0CXSxYk3S8baAdN6ANoCEdAsLn5Pl+3IHV9lChoBkdAlhdKoIfKZGgHTegDaAhHQLC6OVT72td1fZQoaAZHQJfIL9kz41xoB03oA2gIR0Cwu4TVpbljdX2UKGgGR0CaYkYlpoK2aAdN6ANoCEdAsL0fasZHeHV9lChoBkdAmh9YQ8OkL2gHTegDaAhHQLDBNt4A0bd1fZQoaAZHQJnFsTHsC1ZoB03oA2gIR0CwwXqvvBrOdX2UKGgGR0CbELFI/Z/TaAdN6ANoCEdAsMNhrN4Z/HV9lChoBkdAnUPFBt1p02gHTegDaAhHQLDGAhY/3WZ1fZQoaAZHQJ55GvxH5JtoB03oA2gIR0CwysiyyD7JdX2UKGgGR0CdrU8YQ8OkaAdN6ANoCEdAsMsSKDTScHV9lChoBkdAmyP4yTINmWgHTegDaAhHQLDMXv73wkR1fZQoaAZHQJ1/QdT5wfhoB03oA2gIR0CwzfYNmUW3dX2UKGgGR0CarX6XSjQBaAdN6ANoCEdAsNIYb2lEZ3V9lChoBkdAnEtAUtZmqmgHTegDaAhHQLDSg+Yc/+t1fZQoaAZHQJsLQWXTmXBoB03oA2gIR0Cw1KT8+A3DdX2UKGgGR0Cau6fsu3+daAdN6ANoCEdAsNdS+K0laHV9lChoBkdAmKbmxyGSIWgHTegDaAhHQLDbkQF9roJ1fZQoaAZHQJYAvAAQxvhoB03oA2gIR0Cw29baM72ddX2UKGgGR0CYEbs41gpjaAdN6ANoCEdAsN02/tY0VXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b060537f9a918c7fb3f10c74f201089cdd84acd15423b91d1a0caeb50de6ec7
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72947e639da3ed32ce22e4e5435eb5f5ddb38e2c9d339d9b2f9dab97d21e9358
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8c47bc1c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8c47bc1ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8c47bc1d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8c47bc1dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f8c47bc1e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f8c47bc1ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8c47bc1f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8c47b47040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8c47b470d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8c47b47160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8c47b471f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8c47b47280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8c47bbd7b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678177252419732648, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADqMnT+p+g4/iFyJvcwm2z+WSXE/NBXrPypGUj9Qela/hMp2PmtXeT+n/LA/1k8mvkiThT9zf5c/hHOzv+S7iD/GDYw/7MBjv9tPAz/roJ49VYtLv7x1xb+haAU/cm2uPfX8QL8JFy4/oCqYPjKPKz8w68c/Ab4/PjnLmT6fPOA/Cj0kPzHQnD/pios/eEqWv030hr1UUQm/g/ujPy/M8b7ePLo/qkquPXeXiL+4z3g/hlNAv+iYJL8IU9A+tGCAPRwQhr/iJ8i/vZkoP8hb9L71/EC/CRcuP6AqmD4yjys/pORSPpkacT5t04Q+jXgYPgrLir9iJHc+4MGXvj7XCD29ese++CAKPzb6lT+JCaU+b8o8P0XDD79dC3Y+ScQfv38qxr9SGKY+JKD8voWkBL9ATgI/dh9mP00P1T6+1pW/98qpPwkXLj+gKpg+Mo8rP0zIuD/aAQY/Si7avB1iWT/Afns+4Hyrv4aipT6VZfq+dnafPQH1v7/kbjs/VA3kPlNbfT8mdKu/GcBrv4bWhL2P29m9lHySPij2377of/6++FeBv9LthT/mKoc/u2Anv/X8QL8JFy4/oCqYPjKPKz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC3rYM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwy/zvQAAAACVHP6/AAAAAIZSq70AAAAAO2bmPwAAAADUjog9AAAAAES46j8AAAAAyxiAvQAAAADzbf6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuVzwtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJS1qDwAAAAA1lQBwAAAAABo+ee9AAAAADXG/j8AAAAADxKIvAAAAAB/y94/AAAAABuTjb0AAAAAm+jevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKY0bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBPk809AAAAAAg88r8AAAAA8foCPgAAAADyKuE/AAAAABV8+b0AAAAAgPzrPwAAAAAxKMe8AAAAACdS2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtcxG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiqPqPQAAAAAaou6/AAAAAPoWbz0AAAAAbj3jPwAAAAD/XK69AAAAAKYZ9T8AAAAAg/31vQAAAABFDPi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbFNSAH3USMAWyUTegDjAF0lEdAsAfUWvbGm3V9lChoBkdAnh4fLTx5LWgHTegDaAhHQLAL+k1/DtR1fZQoaAZHQJ4PSF/QSjBoB03oA2gIR0CwDDxOLzf8dX2UKGgGR0CeKgPCVKPGaAdN6ANoCEdAsA2P8R+SbHV9lChoBkdAntl4mG/N7mgHTegDaAhHQLAPQ0DU3GZ1fZQoaAZHQKDX6F7laKVoB03oA2gIR0CwFZX/HYHxdX2UKGgGR0CgBliXpnpTaAdN6ANoCEdAsBX7JlrdnHV9lChoBkdAoOb8hcJMQGgHTegDaAhHQLAXWWjXWe91fZQoaAZHQJ/LzP8hs69oB03oA2gIR0CwGPn003wTdX2UKGgGR0CgkSrlNlAeaAdN6ANoCEdAsB0jDBMzuXV9lChoBkdAoT0dIwudw2gHTegDaAhHQLAdagfU4Jh1fZQoaAZHQKFP7RE4NqhoB03oA2gIR0CwHr3BLwnZdX2UKGgGR0CgMCK+BYmtaAdN6ANoCEdAsCCcVBUrCnV9lChoBkdAob2tuR9w32gHTegDaAhHQLAmqaaTfSB1fZQoaAZHQKDtQuscQy1oB03oA2gIR0CwJu5IczZZdX2UKGgGR0ChDxlsP8Q7aAdN6ANoCEdAsCg+9EkSmXV9lChoBkdAoTBjkGRmsmgHTegDaAhHQLApzj8k2P11fZQoaAZHQKFZzG3F1jloB03oA2gIR0CwLeCuMdcTdX2UKGgGR0CgwL1Rk3CLaAdN6ANoCEdAsC4j3oLXtnV9lChoBkdAnyWaKLsKLWgHTegDaAhHQLAvc9Brvb51fZQoaAZHQKHumD8tPHloB03oA2gIR0CwMc7SE12rdX2UKGgGR0ChYFEjxCpnaAdN6ANoCEdAsDdmRaHKwXV9lChoBkdAoTyR9w3o92gHTegDaAhHQLA3plRgqmV1fZQoaAZHQKDy2XkYGdJoB03oA2gIR0CwOPlK5CnhdX2UKGgGR0CfzUoZAIIGaAdN6ANoCEdAsDqifTTfBXV9lChoBkdAnfrg2MsH0WgHTegDaAhHQLA+t1JUYKp1fZQoaAZHQJywcslLOA1oB03oA2gIR0CwPvjMeOn3dX2UKGgGR0CddTrVvuPWaAdN6ANoCEdAsECpVea8YnV9lChoBkdAoFsOnwXqJWgHTegDaAhHQLBDT3/givB1fZQoaAZHQKFPelC1JDpoB03oA2gIR0CwSGP0Zm7KdX2UKGgGR0Cg8Q/8dgfEaAdN6ANoCEdAsEioXQ+lj3V9lChoBkdAobaDbxmTT2gHTegDaAhHQLBJ/E3bVSZ1fZQoaAZHQKFv90A93bFoB03oA2gIR0CwS6nrMTvidX2UKGgGR0ChXVUCih38aAdN6ANoCEdAsFA69du50HV9lChoBkdAoUkSQDFId2gHTegDaAhHQLBQovM8ox51fZQoaAZHQJ9hqEPDpC9oB03oA2gIR0CwUtKFAVwhdX2UKGgGR0ChIEazeGfxaAdN6ANoCEdAsFV3pcHGCXV9lChoBkdAoVmHqiXY2GgHTegDaAhHQLBZlTkyULV1fZQoaAZHQKB7m5lOGj9oB03oA2gIR0CwWdRIjGDMdX2UKGgGR0CgoVhx5s0paAdN6ANoCEdAsFsmnivPknV9lChoBkdAoFbqHEdeY2gHTegDaAhHQLBcywblzU91fZQoaAZHQJ6X/BxgiNdoB03oA2gIR0CwYaoFeOXFdX2UKGgGR0Ce4AAVfu1GaAdN6ANoCEdAsGIUSFoL5XV9lChoBkdAoHXPAymALGgHTegDaAhHQLBkO1p0wJx1fZQoaAZHQKA33hqCYkVoB03oA2gIR0CwZiX3ta6jdX2UKGgGR0CggB06o2n9aAdN6ANoCEdAsGo2+mFajnV9lChoBkdAoGYbfm9xqGgHTegDaAhHQLBqeOpbUw11fZQoaAZHQKCTSbExZdRoB03oA2gIR0Cwa9Y2S+xodX2UKGgGR0Cf2ZweNkvsaAdN6ANoCEdAsG1uwV0tAnV9lChoBkdAoG1VOsT37GgHTegDaAhHQLBzfpB5X2d1fZQoaAZHQKBn2bKifxtoB03oA2gIR0CwdA55eJHidX2UKGgGR0ChZ+JY1YQraAdN6ANoCEdAsHZ9ggHNYHV9lChoBkdAoPyaWX1J2GgHTegDaAhHQLB5UemvW6N1fZQoaAZHQKDdaKu0TlFoB03oA2gIR0CwfayLAHmjdX2UKGgGR0CgrKRNIsiCaAdN6ANoCEdAsH3vjjrAxnV9lChoBkdAn9SuRoysS2gHTegDaAhHQLB/RFxGUfR1fZQoaAZHQKBkMNWEK3NoB03oA2gIR0CwgObYsd1ddX2UKGgGR0CeM5H9WIXTaAdN6ANoCEdAsIamvB7/oHV9lChoBkdAnziNK28Zk2gHTegDaAhHQLCHFwhW5pd1fZQoaAZHQJ0AINYr8SBoB03oA2gIR0CwiP0kKNQ1dX2UKGgGR0CfCGjcEeQuaAdN6ANoCEdAsIqyGGmDUXV9lChoBkdAnWmP2GqPwWgHTegDaAhHQLCO5kWAPNF1fZQoaAZHQJ6214t6HCZoB03oA2gIR0CwjycJY1YRdX2UKGgGR0Cf0s7l7tzCaAdN6ANoCEdAsJB9RIjGDXV9lChoBkdAnWzmUKRdQmgHTegDaAhHQLCSFUtZmqZ1fZQoaAZHQJuuv+xW1dBoB03oA2gIR0CwmHOOS4e+dX2UKGgGR0CcLZ9h7VriaAdN6ANoCEdAsJi5WfbsW3V9lChoBkdAm6syuIRAbGgHTegDaAhHQLCaALGrCFd1fZQoaAZHQJqndQdjoZBoB03oA2gIR0Cwm5K19fCzdX2UKGgGR0CemgAP/aQFaAdN6ANoCEdAsJ/GTX8O1HV9lChoBkdAnpemd7OVxGgHTegDaAhHQLCgByN4qw11fZQoaAZHQJ9nCBPKuCBoB03oA2gIR0CwoV0b1h9cdX2UKGgGR0CcXPnVG0/oaAdN6ANoCEdAsKNlZha1TnV9lChoBkdAlsRvznRsuWgHTegDaAhHQLCpT+L3sX11fZQoaAZHQJpShZha1TloB03oA2gIR0CwqY+pfhMrdX2UKGgGR0CZhNAy2x6faAdN6ANoCEdAsKrV/y5I6XV9lChoBkdAmDnetGNJe2gHTegDaAhHQLCsdzQeFL51fZQoaAZHQJtt1gfEGaBoB03oA2gIR0CwsIbWRRuTdX2UKGgGR0CZNsNCqp97aAdN6ANoCEdAsLDLim2srHV9lChoBkdAnEx3qzJIUmgHTegDaAhHQLCyLJ79hql1fZQoaAZHQJkS8371qWVoB03oA2gIR0CwtKvMKTjedX2UKGgGR0CXSxYk3S8baAdN6ANoCEdAsLn5Pl+3IHV9lChoBkdAlhdKoIfKZGgHTegDaAhHQLC6OVT72td1fZQoaAZHQJfIL9kz41xoB03oA2gIR0Cwu4TVpbljdX2UKGgGR0CaYkYlpoK2aAdN6ANoCEdAsL0fasZHeHV9lChoBkdAmh9YQ8OkL2gHTegDaAhHQLDBNt4A0bd1fZQoaAZHQJnFsTHsC1ZoB03oA2gIR0CwwXqvvBrOdX2UKGgGR0CbELFI/Z/TaAdN6ANoCEdAsMNhrN4Z/HV9lChoBkdAnUPFBt1p02gHTegDaAhHQLDGAhY/3WZ1fZQoaAZHQJ55GvxH5JtoB03oA2gIR0CwysiyyD7JdX2UKGgGR0CdrU8YQ8OkaAdN6ANoCEdAsMsSKDTScHV9lChoBkdAmyP4yTINmWgHTegDaAhHQLDMXv73wkR1fZQoaAZHQJ1/QdT5wfhoB03oA2gIR0CwzfYNmUW3dX2UKGgGR0CarX6XSjQBaAdN6ANoCEdAsNIYb2lEZ3V9lChoBkdAnEtAUtZmqmgHTegDaAhHQLDSg+Yc/+t1fZQoaAZHQJsLQWXTmXBoB03oA2gIR0Cw1KT8+A3DdX2UKGgGR0Cau6fsu3+daAdN6ANoCEdAsNdS+K0laHV9lChoBkdAmKbmxyGSIWgHTegDaAhHQLDbkQF9roJ1fZQoaAZHQJYAvAAQxvhoB03oA2gIR0Cw29baM72ddX2UKGgGR0CYEbs41gpjaAdN6ANoCEdAsN02/tY0VXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6e4bb31617cd2114f25e37f5bdbbda23b9d8eec71ea981f47329222c064a3f7
|
3 |
+
size 1166791
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1518.8610639431688, "std_reward": 58.26542559158774, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T09:34:45.396649"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:134305d5269e0336a4accd02f6622189aeaf46daba1e3a28090987968d0f4843
|
3 |
+
size 2136
|