|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Conversion script for the LDM checkpoints.""" |
|
|
|
import argparse |
|
import importlib |
|
|
|
import torch |
|
|
|
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." |
|
) |
|
|
|
parser.add_argument( |
|
"--original_config_file", |
|
default=None, |
|
type=str, |
|
help="The YAML config file corresponding to the original architecture.", |
|
) |
|
parser.add_argument( |
|
"--config_files", |
|
default=None, |
|
type=str, |
|
help="The YAML config file corresponding to the architecture.", |
|
) |
|
parser.add_argument( |
|
"--num_in_channels", |
|
default=None, |
|
type=int, |
|
help="The number of input channels. If `None` number of input channels will be automatically inferred.", |
|
) |
|
parser.add_argument( |
|
"--scheduler_type", |
|
default="pndm", |
|
type=str, |
|
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", |
|
) |
|
parser.add_argument( |
|
"--pipeline_type", |
|
default=None, |
|
type=str, |
|
help=( |
|
"The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" |
|
". If `None` pipeline will be automatically inferred." |
|
), |
|
) |
|
parser.add_argument( |
|
"--image_size", |
|
default=None, |
|
type=int, |
|
help=( |
|
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" |
|
" Base. Use 768 for Stable Diffusion v2." |
|
), |
|
) |
|
parser.add_argument( |
|
"--prediction_type", |
|
default=None, |
|
type=str, |
|
help=( |
|
"The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" |
|
" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." |
|
), |
|
) |
|
parser.add_argument( |
|
"--extract_ema", |
|
action="store_true", |
|
help=( |
|
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" |
|
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" |
|
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." |
|
), |
|
) |
|
parser.add_argument( |
|
"--upcast_attention", |
|
action="store_true", |
|
help=( |
|
"Whether the attention computation should always be upcasted. This is necessary when running stable" |
|
" diffusion 2.1." |
|
), |
|
) |
|
parser.add_argument( |
|
"--from_safetensors", |
|
action="store_true", |
|
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", |
|
) |
|
parser.add_argument( |
|
"--to_safetensors", |
|
action="store_true", |
|
help="Whether to store pipeline in safetensors format or not.", |
|
) |
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") |
|
parser.add_argument( |
|
"--stable_unclip", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", |
|
) |
|
parser.add_argument( |
|
"--stable_unclip_prior", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", |
|
) |
|
parser.add_argument( |
|
"--clip_stats_path", |
|
type=str, |
|
help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", |
|
required=False, |
|
) |
|
parser.add_argument( |
|
"--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." |
|
) |
|
parser.add_argument("--half", action="store_true", help="Save weights in half precision.") |
|
parser.add_argument( |
|
"--vae_path", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Set to a path, hub id to an already converted vae to not convert it again.", |
|
) |
|
parser.add_argument( |
|
"--pipeline_class_name", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Specify the pipeline class name", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
if args.pipeline_class_name is not None: |
|
library = importlib.import_module("diffusers") |
|
class_obj = getattr(library, args.pipeline_class_name) |
|
pipeline_class = class_obj |
|
else: |
|
pipeline_class = None |
|
|
|
pipe = download_from_original_stable_diffusion_ckpt( |
|
checkpoint_path_or_dict=args.checkpoint_path, |
|
original_config_file=args.original_config_file, |
|
config_files=args.config_files, |
|
image_size=args.image_size, |
|
prediction_type=args.prediction_type, |
|
model_type=args.pipeline_type, |
|
extract_ema=args.extract_ema, |
|
scheduler_type=args.scheduler_type, |
|
num_in_channels=args.num_in_channels, |
|
upcast_attention=args.upcast_attention, |
|
from_safetensors=args.from_safetensors, |
|
device=args.device, |
|
stable_unclip=args.stable_unclip, |
|
stable_unclip_prior=args.stable_unclip_prior, |
|
clip_stats_path=args.clip_stats_path, |
|
controlnet=args.controlnet, |
|
vae_path=args.vae_path, |
|
pipeline_class=pipeline_class, |
|
) |
|
|
|
if args.half: |
|
pipe.to(dtype=torch.float16) |
|
|
|
if args.controlnet: |
|
|
|
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) |
|
else: |
|
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) |
|
|