|
import argparse |
|
import re |
|
|
|
import torch |
|
import yaml |
|
from transformers import ( |
|
CLIPProcessor, |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
StableDiffusionGLIGENPipeline, |
|
StableDiffusionGLIGENTextImagePipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( |
|
assign_to_checkpoint, |
|
conv_attn_to_linear, |
|
protected, |
|
renew_attention_paths, |
|
renew_resnet_paths, |
|
renew_vae_attention_paths, |
|
renew_vae_resnet_paths, |
|
shave_segments, |
|
textenc_conversion_map, |
|
textenc_pattern, |
|
) |
|
|
|
|
|
def convert_open_clip_checkpoint(checkpoint): |
|
checkpoint = checkpoint["text_encoder"] |
|
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
keys = list(checkpoint.keys()) |
|
|
|
text_model_dict = {} |
|
|
|
if "cond_stage_model.model.text_projection" in checkpoint: |
|
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0]) |
|
else: |
|
d_model = 1024 |
|
|
|
for key in keys: |
|
if "resblocks.23" in key: |
|
continue |
|
if key in textenc_conversion_map: |
|
text_model_dict[textenc_conversion_map[key]] = checkpoint[key] |
|
|
|
new_key = key[len("transformer.") :] |
|
if new_key.endswith(".in_proj_weight"): |
|
new_key = new_key[: -len(".in_proj_weight")] |
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) |
|
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :] |
|
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :] |
|
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :] |
|
elif new_key.endswith(".in_proj_bias"): |
|
new_key = new_key[: -len(".in_proj_bias")] |
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) |
|
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model] |
|
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2] |
|
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :] |
|
else: |
|
if key != "transformer.text_model.embeddings.position_ids": |
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) |
|
|
|
text_model_dict[new_key] = checkpoint[key] |
|
|
|
if key == "transformer.text_model.embeddings.token_embedding.weight": |
|
text_model_dict["text_model.embeddings.token_embedding.weight"] = checkpoint[key] |
|
|
|
text_model_dict.pop("text_model.embeddings.transformer.text_model.embeddings.token_embedding.weight") |
|
|
|
text_model.load_state_dict(text_model_dict) |
|
|
|
return text_model |
|
|
|
|
|
def convert_gligen_vae_checkpoint(checkpoint, config): |
|
checkpoint = checkpoint["autoencoder"] |
|
vae_state_dict = {} |
|
vae_key = "first_stage_model." |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] |
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] |
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] |
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] |
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] |
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] |
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] |
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] |
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] |
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] |
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] |
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] |
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] |
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] |
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] |
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] |
|
|
|
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) |
|
down_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) |
|
} |
|
|
|
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) |
|
up_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) |
|
} |
|
|
|
for i in range(num_down_blocks): |
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] |
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.weight" |
|
) |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.bias" |
|
) |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
resnets = [ |
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key |
|
] |
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.weight" |
|
] |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.bias" |
|
] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
for key in new_checkpoint.keys(): |
|
if "encoder.mid_block.attentions.0" in key or "decoder.mid_block.attentions.0" in key: |
|
if "query" in key: |
|
new_checkpoint[key.replace("query", "to_q")] = new_checkpoint.pop(key) |
|
if "value" in key: |
|
new_checkpoint[key.replace("value", "to_v")] = new_checkpoint.pop(key) |
|
if "key" in key: |
|
new_checkpoint[key.replace("key", "to_k")] = new_checkpoint.pop(key) |
|
if "proj_attn" in key: |
|
new_checkpoint[key.replace("proj_attn", "to_out.0")] = new_checkpoint.pop(key) |
|
|
|
return new_checkpoint |
|
|
|
|
|
def convert_gligen_unet_checkpoint(checkpoint, config, path=None, extract_ema=False): |
|
unet_state_dict = {} |
|
checkpoint = checkpoint["model"] |
|
keys = list(checkpoint.keys()) |
|
|
|
unet_key = "model.diffusion_model." |
|
|
|
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: |
|
print(f"Checkpoint {path} has bot EMA and non-EMA weights.") |
|
print( |
|
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" |
|
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." |
|
) |
|
for key in keys: |
|
if key.startswith("model.diffusion_model"): |
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) |
|
else: |
|
if sum(k.startswith("model_ema") for k in keys) > 100: |
|
print( |
|
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" |
|
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." |
|
) |
|
for key in keys: |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] |
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] |
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] |
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] |
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] |
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] |
|
|
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] |
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] |
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] |
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] |
|
|
|
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) |
|
input_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] |
|
for layer_id in range(num_input_blocks) |
|
} |
|
|
|
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) |
|
middle_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] |
|
for layer_id in range(num_middle_blocks) |
|
} |
|
|
|
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) |
|
output_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] |
|
for layer_id in range(num_output_blocks) |
|
} |
|
|
|
for i in range(1, num_input_blocks): |
|
block_id = (i - 1) // (config["layers_per_block"] + 1) |
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) |
|
|
|
resnets = [ |
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key |
|
] |
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] |
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.weight" |
|
) |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.bias" |
|
) |
|
|
|
paths = renew_resnet_paths(resnets) |
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
resnet_0 = middle_blocks[0] |
|
attentions = middle_blocks[1] |
|
resnet_1 = middle_blocks[2] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0) |
|
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1) |
|
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
attentions_paths = renew_attention_paths(attentions) |
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint( |
|
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
for i in range(num_output_blocks): |
|
block_id = i // (config["layers_per_block"] + 1) |
|
layer_in_block_id = i % (config["layers_per_block"] + 1) |
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] |
|
output_block_list = {} |
|
|
|
for layer in output_block_layers: |
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) |
|
if layer_id in output_block_list: |
|
output_block_list[layer_id].append(layer_name) |
|
else: |
|
output_block_list[layer_id] = [layer_name] |
|
|
|
if len(output_block_list) > 1: |
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] |
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnets) |
|
paths = renew_resnet_paths(resnets) |
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
output_block_list = {k: sorted(v) for k, v in output_block_list.items()} |
|
if ["conv.bias", "conv.weight"] in output_block_list.values(): |
|
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.weight" |
|
] |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.bias" |
|
] |
|
|
|
|
|
if len(attentions) == 2: |
|
attentions = [] |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = { |
|
"old": f"output_blocks.{i}.1", |
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", |
|
} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
else: |
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) |
|
for path in resnet_0_paths: |
|
old_path = ".".join(["output_blocks", str(i), path["old"]]) |
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) |
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path] |
|
|
|
for key in keys: |
|
if "position_net" in key: |
|
new_checkpoint[key] = unet_state_dict[key] |
|
|
|
return new_checkpoint |
|
|
|
|
|
def create_vae_config(original_config, image_size: int): |
|
vae_params = original_config["autoencoder"]["params"]["ddconfig"] |
|
_ = original_config["autoencoder"]["params"]["embed_dim"] |
|
|
|
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]] |
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) |
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) |
|
|
|
config = { |
|
"sample_size": image_size, |
|
"in_channels": vae_params["in_channels"], |
|
"out_channels": vae_params["out_ch"], |
|
"down_block_types": tuple(down_block_types), |
|
"up_block_types": tuple(up_block_types), |
|
"block_out_channels": tuple(block_out_channels), |
|
"latent_channels": vae_params["z_channels"], |
|
"layers_per_block": vae_params["num_res_blocks"], |
|
} |
|
|
|
return config |
|
|
|
|
|
def create_unet_config(original_config, image_size: int, attention_type): |
|
unet_params = original_config["model"]["params"] |
|
vae_params = original_config["autoencoder"]["params"]["ddconfig"] |
|
|
|
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]] |
|
|
|
down_block_types = [] |
|
resolution = 1 |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D" |
|
down_block_types.append(block_type) |
|
if i != len(block_out_channels) - 1: |
|
resolution *= 2 |
|
|
|
up_block_types = [] |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D" |
|
up_block_types.append(block_type) |
|
resolution //= 2 |
|
|
|
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1) |
|
|
|
head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None |
|
use_linear_projection = ( |
|
unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False |
|
) |
|
if use_linear_projection: |
|
if head_dim is None: |
|
head_dim = [5, 10, 20, 20] |
|
|
|
config = { |
|
"sample_size": image_size // vae_scale_factor, |
|
"in_channels": unet_params["in_channels"], |
|
"down_block_types": tuple(down_block_types), |
|
"block_out_channels": tuple(block_out_channels), |
|
"layers_per_block": unet_params["num_res_blocks"], |
|
"cross_attention_dim": unet_params["context_dim"], |
|
"attention_head_dim": head_dim, |
|
"use_linear_projection": use_linear_projection, |
|
"attention_type": attention_type, |
|
} |
|
|
|
return config |
|
|
|
|
|
def convert_gligen_to_diffusers( |
|
checkpoint_path: str, |
|
original_config_file: str, |
|
attention_type: str, |
|
image_size: int = 512, |
|
extract_ema: bool = False, |
|
num_in_channels: int = None, |
|
device: str = None, |
|
): |
|
if device is None: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
else: |
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
|
|
if "global_step" in checkpoint: |
|
checkpoint["global_step"] |
|
else: |
|
print("global_step key not found in model") |
|
|
|
original_config = yaml.safe_load(original_config_file) |
|
|
|
if num_in_channels is not None: |
|
original_config["model"]["params"]["in_channels"] = num_in_channels |
|
|
|
num_train_timesteps = original_config["diffusion"]["params"]["timesteps"] |
|
beta_start = original_config["diffusion"]["params"]["linear_start"] |
|
beta_end = original_config["diffusion"]["params"]["linear_end"] |
|
|
|
scheduler = DDIMScheduler( |
|
beta_end=beta_end, |
|
beta_schedule="scaled_linear", |
|
beta_start=beta_start, |
|
num_train_timesteps=num_train_timesteps, |
|
steps_offset=1, |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
prediction_type="epsilon", |
|
) |
|
|
|
|
|
unet_config = create_unet_config(original_config, image_size, attention_type) |
|
unet = UNet2DConditionModel(**unet_config) |
|
|
|
converted_unet_checkpoint = convert_gligen_unet_checkpoint( |
|
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema |
|
) |
|
|
|
unet.load_state_dict(converted_unet_checkpoint) |
|
|
|
|
|
vae_config = create_vae_config(original_config, image_size) |
|
converted_vae_checkpoint = convert_gligen_vae_checkpoint(checkpoint, vae_config) |
|
|
|
vae = AutoencoderKL(**vae_config) |
|
vae.load_state_dict(converted_vae_checkpoint) |
|
|
|
|
|
text_encoder = convert_open_clip_checkpoint(checkpoint) |
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
if attention_type == "gated-text-image": |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") |
|
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
pipe = StableDiffusionGLIGENTextImagePipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
image_encoder=image_encoder, |
|
processor=processor, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=None, |
|
feature_extractor=None, |
|
) |
|
elif attention_type == "gated": |
|
pipe = StableDiffusionGLIGENPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=None, |
|
feature_extractor=None, |
|
) |
|
|
|
return pipe |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." |
|
) |
|
parser.add_argument( |
|
"--original_config_file", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The YAML config file corresponding to the gligen architecture.", |
|
) |
|
parser.add_argument( |
|
"--num_in_channels", |
|
default=None, |
|
type=int, |
|
help="The number of input channels. If `None` number of input channels will be automatically inferred.", |
|
) |
|
parser.add_argument( |
|
"--extract_ema", |
|
action="store_true", |
|
help=( |
|
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" |
|
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" |
|
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." |
|
), |
|
) |
|
parser.add_argument( |
|
"--attention_type", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Type of attention ex: gated or gated-text-image", |
|
) |
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
parser.add_argument("--device", type=str, help="Device to use.") |
|
parser.add_argument("--half", action="store_true", help="Save weights in half precision.") |
|
|
|
args = parser.parse_args() |
|
|
|
pipe = convert_gligen_to_diffusers( |
|
checkpoint_path=args.checkpoint_path, |
|
original_config_file=args.original_config_file, |
|
attention_type=args.attention_type, |
|
extract_ema=args.extract_ema, |
|
num_in_channels=args.num_in_channels, |
|
device=args.device, |
|
) |
|
|
|
if args.half: |
|
pipe.to(dtype=torch.float16) |
|
|
|
pipe.save_pretrained(args.dump_path) |
|
|