|
import argparse |
|
import json |
|
|
|
import torch |
|
|
|
from diffusers import AutoencoderKL, DDPMPipeline, DDPMScheduler, UNet2DModel, VQModel |
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1): |
|
""" |
|
Removes segments. Positive values shave the first segments, negative shave the last segments. |
|
""" |
|
if n_shave_prefix_segments >= 0: |
|
return ".".join(path.split(".")[n_shave_prefix_segments:]) |
|
else: |
|
return ".".join(path.split(".")[:n_shave_prefix_segments]) |
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
new_item = new_item.replace("block.", "resnets.") |
|
new_item = new_item.replace("conv_shorcut", "conv1") |
|
new_item = new_item.replace("in_shortcut", "conv_shortcut") |
|
new_item = new_item.replace("temb_proj", "time_emb_proj") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0, in_mid=False): |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
|
|
if not in_mid: |
|
new_item = new_item.replace("attn", "attentions") |
|
new_item = new_item.replace(".k.", ".key.") |
|
new_item = new_item.replace(".v.", ".value.") |
|
new_item = new_item.replace(".q.", ".query.") |
|
|
|
new_item = new_item.replace("proj_out", "proj_attn") |
|
new_item = new_item.replace("norm", "group_norm") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def assign_to_checkpoint( |
|
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None |
|
): |
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." |
|
|
|
if attention_paths_to_split is not None: |
|
if config is None: |
|
raise ValueError("Please specify the config if setting 'attention_paths_to_split' to 'True'.") |
|
|
|
for path, path_map in attention_paths_to_split.items(): |
|
old_tensor = old_checkpoint[path] |
|
channels = old_tensor.shape[0] // 3 |
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) |
|
|
|
num_heads = old_tensor.shape[0] // config.get("num_head_channels", 1) // 3 |
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) |
|
query, key, value = old_tensor.split(channels // num_heads, dim=1) |
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape).squeeze() |
|
checkpoint[path_map["key"]] = key.reshape(target_shape).squeeze() |
|
checkpoint[path_map["value"]] = value.reshape(target_shape).squeeze() |
|
|
|
for path in paths: |
|
new_path = path["new"] |
|
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split: |
|
continue |
|
|
|
new_path = new_path.replace("down.", "down_blocks.") |
|
new_path = new_path.replace("up.", "up_blocks.") |
|
|
|
if additional_replacements is not None: |
|
for replacement in additional_replacements: |
|
new_path = new_path.replace(replacement["old"], replacement["new"]) |
|
|
|
if "attentions" in new_path: |
|
checkpoint[new_path] = old_checkpoint[path["old"]].squeeze() |
|
else: |
|
checkpoint[new_path] = old_checkpoint[path["old"]] |
|
|
|
|
|
def convert_ddpm_checkpoint(checkpoint, config): |
|
""" |
|
Takes a state dict and a config, and returns a converted checkpoint. |
|
""" |
|
new_checkpoint = {} |
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["temb.dense.0.weight"] |
|
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["temb.dense.0.bias"] |
|
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["temb.dense.1.weight"] |
|
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["temb.dense.1.bias"] |
|
|
|
new_checkpoint["conv_norm_out.weight"] = checkpoint["norm_out.weight"] |
|
new_checkpoint["conv_norm_out.bias"] = checkpoint["norm_out.bias"] |
|
|
|
new_checkpoint["conv_in.weight"] = checkpoint["conv_in.weight"] |
|
new_checkpoint["conv_in.bias"] = checkpoint["conv_in.bias"] |
|
new_checkpoint["conv_out.weight"] = checkpoint["conv_out.weight"] |
|
new_checkpoint["conv_out.bias"] = checkpoint["conv_out.bias"] |
|
|
|
num_down_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "down" in layer}) |
|
down_blocks = { |
|
layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) |
|
} |
|
|
|
num_up_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "up" in layer}) |
|
up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} |
|
|
|
for i in range(num_down_blocks): |
|
block_id = (i - 1) // (config["layers_per_block"] + 1) |
|
|
|
if any("downsample" in layer for layer in down_blocks[i]): |
|
new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[ |
|
f"down.{i}.downsample.op.weight" |
|
] |
|
new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[f"down.{i}.downsample.op.bias"] |
|
|
|
|
|
|
|
if any("block" in layer for layer in down_blocks[i]): |
|
num_blocks = len( |
|
{".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "block" in layer} |
|
) |
|
blocks = { |
|
layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key] |
|
for layer_id in range(num_blocks) |
|
} |
|
|
|
if num_blocks > 0: |
|
for j in range(config["layers_per_block"]): |
|
paths = renew_resnet_paths(blocks[j]) |
|
assign_to_checkpoint(paths, new_checkpoint, checkpoint) |
|
|
|
if any("attn" in layer for layer in down_blocks[i]): |
|
num_attn = len( |
|
{".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "attn" in layer} |
|
) |
|
attns = { |
|
layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key] |
|
for layer_id in range(num_blocks) |
|
} |
|
|
|
if num_attn > 0: |
|
for j in range(config["layers_per_block"]): |
|
paths = renew_attention_paths(attns[j]) |
|
assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config) |
|
|
|
mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key] |
|
mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key] |
|
mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key] |
|
|
|
|
|
paths = renew_resnet_paths(mid_block_1_layers) |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
checkpoint, |
|
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}], |
|
) |
|
|
|
paths = renew_resnet_paths(mid_block_2_layers) |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
checkpoint, |
|
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}], |
|
) |
|
|
|
paths = renew_attention_paths(mid_attn_1_layers, in_mid=True) |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
checkpoint, |
|
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}], |
|
) |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
|
|
if any("upsample" in layer for layer in up_blocks[i]): |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[ |
|
f"up.{i}.upsample.conv.weight" |
|
] |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[f"up.{i}.upsample.conv.bias"] |
|
|
|
if any("block" in layer for layer in up_blocks[i]): |
|
num_blocks = len( |
|
{".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "block" in layer} |
|
) |
|
blocks = { |
|
layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) |
|
} |
|
|
|
if num_blocks > 0: |
|
for j in range(config["layers_per_block"] + 1): |
|
replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} |
|
paths = renew_resnet_paths(blocks[j]) |
|
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) |
|
|
|
if any("attn" in layer for layer in up_blocks[i]): |
|
num_attn = len( |
|
{".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "attn" in layer} |
|
) |
|
attns = { |
|
layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) |
|
} |
|
|
|
if num_attn > 0: |
|
for j in range(config["layers_per_block"] + 1): |
|
replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} |
|
paths = renew_attention_paths(attns[j]) |
|
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) |
|
|
|
new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()} |
|
return new_checkpoint |
|
|
|
|
|
def convert_vq_autoenc_checkpoint(checkpoint, config): |
|
""" |
|
Takes a state dict and a config, and returns a converted checkpoint. |
|
""" |
|
new_checkpoint = {} |
|
|
|
new_checkpoint["encoder.conv_norm_out.weight"] = checkpoint["encoder.norm_out.weight"] |
|
new_checkpoint["encoder.conv_norm_out.bias"] = checkpoint["encoder.norm_out.bias"] |
|
|
|
new_checkpoint["encoder.conv_in.weight"] = checkpoint["encoder.conv_in.weight"] |
|
new_checkpoint["encoder.conv_in.bias"] = checkpoint["encoder.conv_in.bias"] |
|
new_checkpoint["encoder.conv_out.weight"] = checkpoint["encoder.conv_out.weight"] |
|
new_checkpoint["encoder.conv_out.bias"] = checkpoint["encoder.conv_out.bias"] |
|
|
|
new_checkpoint["decoder.conv_norm_out.weight"] = checkpoint["decoder.norm_out.weight"] |
|
new_checkpoint["decoder.conv_norm_out.bias"] = checkpoint["decoder.norm_out.bias"] |
|
|
|
new_checkpoint["decoder.conv_in.weight"] = checkpoint["decoder.conv_in.weight"] |
|
new_checkpoint["decoder.conv_in.bias"] = checkpoint["decoder.conv_in.bias"] |
|
new_checkpoint["decoder.conv_out.weight"] = checkpoint["decoder.conv_out.weight"] |
|
new_checkpoint["decoder.conv_out.bias"] = checkpoint["decoder.conv_out.bias"] |
|
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "down" in layer}) |
|
down_blocks = { |
|
layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) |
|
} |
|
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "up" in layer}) |
|
up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} |
|
|
|
for i in range(num_down_blocks): |
|
block_id = (i - 1) // (config["layers_per_block"] + 1) |
|
|
|
if any("downsample" in layer for layer in down_blocks[i]): |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[ |
|
f"encoder.down.{i}.downsample.conv.weight" |
|
] |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[ |
|
f"encoder.down.{i}.downsample.conv.bias" |
|
] |
|
|
|
if any("block" in layer for layer in down_blocks[i]): |
|
num_blocks = len( |
|
{".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "block" in layer} |
|
) |
|
blocks = { |
|
layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key] |
|
for layer_id in range(num_blocks) |
|
} |
|
|
|
if num_blocks > 0: |
|
for j in range(config["layers_per_block"]): |
|
paths = renew_resnet_paths(blocks[j]) |
|
assign_to_checkpoint(paths, new_checkpoint, checkpoint) |
|
|
|
if any("attn" in layer for layer in down_blocks[i]): |
|
num_attn = len( |
|
{".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "attn" in layer} |
|
) |
|
attns = { |
|
layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key] |
|
for layer_id in range(num_blocks) |
|
} |
|
|
|
if num_attn > 0: |
|
for j in range(config["layers_per_block"]): |
|
paths = renew_attention_paths(attns[j]) |
|
assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config) |
|
|
|
mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key] |
|
mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key] |
|
mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key] |
|
|
|
|
|
paths = renew_resnet_paths(mid_block_1_layers) |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
checkpoint, |
|
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}], |
|
) |
|
|
|
paths = renew_resnet_paths(mid_block_2_layers) |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
checkpoint, |
|
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}], |
|
) |
|
|
|
paths = renew_attention_paths(mid_attn_1_layers, in_mid=True) |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
checkpoint, |
|
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}], |
|
) |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
|
|
if any("upsample" in layer for layer in up_blocks[i]): |
|
new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[ |
|
f"decoder.up.{i}.upsample.conv.weight" |
|
] |
|
new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[ |
|
f"decoder.up.{i}.upsample.conv.bias" |
|
] |
|
|
|
if any("block" in layer for layer in up_blocks[i]): |
|
num_blocks = len( |
|
{".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "block" in layer} |
|
) |
|
blocks = { |
|
layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) |
|
} |
|
|
|
if num_blocks > 0: |
|
for j in range(config["layers_per_block"] + 1): |
|
replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} |
|
paths = renew_resnet_paths(blocks[j]) |
|
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) |
|
|
|
if any("attn" in layer for layer in up_blocks[i]): |
|
num_attn = len( |
|
{".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "attn" in layer} |
|
) |
|
attns = { |
|
layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) |
|
} |
|
|
|
if num_attn > 0: |
|
for j in range(config["layers_per_block"] + 1): |
|
replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} |
|
paths = renew_attention_paths(attns[j]) |
|
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) |
|
|
|
new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()} |
|
new_checkpoint["quant_conv.weight"] = checkpoint["quant_conv.weight"] |
|
new_checkpoint["quant_conv.bias"] = checkpoint["quant_conv.bias"] |
|
if "quantize.embedding.weight" in checkpoint: |
|
new_checkpoint["quantize.embedding.weight"] = checkpoint["quantize.embedding.weight"] |
|
new_checkpoint["post_quant_conv.weight"] = checkpoint["post_quant_conv.weight"] |
|
new_checkpoint["post_quant_conv.bias"] = checkpoint["post_quant_conv.bias"] |
|
|
|
return new_checkpoint |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." |
|
) |
|
|
|
parser.add_argument( |
|
"--config_file", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The config json file corresponding to the architecture.", |
|
) |
|
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
|
|
args = parser.parse_args() |
|
checkpoint = torch.load(args.checkpoint_path) |
|
|
|
with open(args.config_file) as f: |
|
config = json.loads(f.read()) |
|
|
|
|
|
key_prefix_set = {key.split(".")[0] for key in checkpoint.keys()} |
|
if "encoder" in key_prefix_set and "decoder" in key_prefix_set: |
|
converted_checkpoint = convert_vq_autoenc_checkpoint(checkpoint, config) |
|
else: |
|
converted_checkpoint = convert_ddpm_checkpoint(checkpoint, config) |
|
|
|
if "ddpm" in config: |
|
del config["ddpm"] |
|
|
|
if config["_class_name"] == "VQModel": |
|
model = VQModel(**config) |
|
model.load_state_dict(converted_checkpoint) |
|
model.save_pretrained(args.dump_path) |
|
elif config["_class_name"] == "AutoencoderKL": |
|
model = AutoencoderKL(**config) |
|
model.load_state_dict(converted_checkpoint) |
|
model.save_pretrained(args.dump_path) |
|
else: |
|
model = UNet2DModel(**config) |
|
model.load_state_dict(converted_checkpoint) |
|
|
|
scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) |
|
|
|
pipe = DDPMPipeline(unet=model, scheduler=scheduler) |
|
pipe.save_pretrained(args.dump_path) |
|
|