|
import argparse |
|
import tempfile |
|
|
|
import torch |
|
from accelerate import load_checkpoint_and_dispatch |
|
|
|
from diffusers.models.transformers.prior_transformer import PriorTransformer |
|
from diffusers.pipelines.shap_e import ShapERenderer |
|
|
|
|
|
""" |
|
Example - From the diffusers root directory: |
|
|
|
Download weights: |
|
```sh |
|
$ wget "https://openaipublic.azureedge.net/main/shap-e/text_cond.pt" |
|
``` |
|
|
|
Convert the model: |
|
```sh |
|
$ python scripts/convert_shap_e_to_diffusers.py \ |
|
--prior_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/text_cond.pt \ |
|
--prior_image_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/image_cond.pt \ |
|
--transmitter_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/transmitter.pt\ |
|
--dump_path /home/yiyi_huggingface_co/model_repo/shap-e-img2img/shap_e_renderer\ |
|
--debug renderer |
|
``` |
|
""" |
|
|
|
|
|
|
|
|
|
PRIOR_ORIGINAL_PREFIX = "wrapped" |
|
|
|
PRIOR_CONFIG = { |
|
"num_attention_heads": 16, |
|
"attention_head_dim": 1024 // 16, |
|
"num_layers": 24, |
|
"embedding_dim": 1024, |
|
"num_embeddings": 1024, |
|
"additional_embeddings": 0, |
|
"time_embed_act_fn": "gelu", |
|
"norm_in_type": "layer", |
|
"encoder_hid_proj_type": None, |
|
"added_emb_type": None, |
|
"time_embed_dim": 1024 * 4, |
|
"embedding_proj_dim": 768, |
|
"clip_embed_dim": 1024 * 2, |
|
} |
|
|
|
|
|
def prior_model_from_original_config(): |
|
model = PriorTransformer(**PRIOR_CONFIG) |
|
|
|
return model |
|
|
|
|
|
def prior_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): |
|
diffusers_checkpoint = {} |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"time_embedding.linear_1.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_fc.weight"], |
|
"time_embedding.linear_1.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_fc.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"time_embedding.linear_2.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_proj.weight"], |
|
"time_embedding.linear_2.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_proj.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"proj_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.input_proj.weight"], |
|
"proj_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.input_proj.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"embedding_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_embed.weight"], |
|
"embedding_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_embed.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update({"positional_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.pos_emb"][None, :]}) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"norm_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_pre.weight"], |
|
"norm_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_pre.bias"], |
|
} |
|
) |
|
|
|
|
|
for idx in range(len(model.transformer_blocks)): |
|
diffusers_transformer_prefix = f"transformer_blocks.{idx}" |
|
original_transformer_prefix = f"{PRIOR_ORIGINAL_PREFIX}.backbone.resblocks.{idx}" |
|
|
|
|
|
diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1" |
|
original_attention_prefix = f"{original_transformer_prefix}.attn" |
|
diffusers_checkpoint.update( |
|
prior_attention_to_diffusers( |
|
checkpoint, |
|
diffusers_attention_prefix=diffusers_attention_prefix, |
|
original_attention_prefix=original_attention_prefix, |
|
attention_head_dim=model.attention_head_dim, |
|
) |
|
) |
|
|
|
|
|
diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff" |
|
original_ff_prefix = f"{original_transformer_prefix}.mlp" |
|
diffusers_checkpoint.update( |
|
prior_ff_to_diffusers( |
|
checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix |
|
) |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[ |
|
f"{original_transformer_prefix}.ln_1.weight" |
|
], |
|
f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[ |
|
f"{original_transformer_prefix}.ln_2.weight" |
|
], |
|
f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"norm_out.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_post.weight"], |
|
"norm_out.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_post.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.output_proj.weight"], |
|
"proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.output_proj.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
def prior_attention_to_diffusers( |
|
checkpoint, *, diffusers_attention_prefix, original_attention_prefix, attention_head_dim |
|
): |
|
diffusers_checkpoint = {} |
|
|
|
|
|
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions( |
|
weight=checkpoint[f"{original_attention_prefix}.c_qkv.weight"], |
|
bias=checkpoint[f"{original_attention_prefix}.c_qkv.bias"], |
|
split=3, |
|
chunk_size=attention_head_dim, |
|
) |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_attention_prefix}.to_q.weight": q_weight, |
|
f"{diffusers_attention_prefix}.to_q.bias": q_bias, |
|
f"{diffusers_attention_prefix}.to_k.weight": k_weight, |
|
f"{diffusers_attention_prefix}.to_k.bias": k_bias, |
|
f"{diffusers_attention_prefix}.to_v.weight": v_weight, |
|
f"{diffusers_attention_prefix}.to_v.bias": v_bias, |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{original_attention_prefix}.c_proj.weight"], |
|
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{original_attention_prefix}.c_proj.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
def prior_ff_to_diffusers(checkpoint, *, diffusers_ff_prefix, original_ff_prefix): |
|
diffusers_checkpoint = { |
|
|
|
f"{diffusers_ff_prefix}.net.{0}.proj.weight": checkpoint[f"{original_ff_prefix}.c_fc.weight"], |
|
f"{diffusers_ff_prefix}.net.{0}.proj.bias": checkpoint[f"{original_ff_prefix}.c_fc.bias"], |
|
|
|
f"{diffusers_ff_prefix}.net.{2}.weight": checkpoint[f"{original_ff_prefix}.c_proj.weight"], |
|
f"{diffusers_ff_prefix}.net.{2}.bias": checkpoint[f"{original_ff_prefix}.c_proj.bias"], |
|
} |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PRIOR_IMAGE_ORIGINAL_PREFIX = "wrapped" |
|
|
|
|
|
PRIOR_IMAGE_CONFIG = { |
|
"num_attention_heads": 8, |
|
"attention_head_dim": 1024 // 8, |
|
"num_layers": 24, |
|
"embedding_dim": 1024, |
|
"num_embeddings": 1024, |
|
"additional_embeddings": 0, |
|
"time_embed_act_fn": "gelu", |
|
"norm_in_type": "layer", |
|
"embedding_proj_norm_type": "layer", |
|
"encoder_hid_proj_type": None, |
|
"added_emb_type": None, |
|
"time_embed_dim": 1024 * 4, |
|
"embedding_proj_dim": 1024, |
|
"clip_embed_dim": 1024 * 2, |
|
} |
|
|
|
|
|
def prior_image_model_from_original_config(): |
|
model = PriorTransformer(**PRIOR_IMAGE_CONFIG) |
|
|
|
return model |
|
|
|
|
|
def prior_image_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): |
|
diffusers_checkpoint = {} |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"time_embedding.linear_1.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_fc.weight"], |
|
"time_embedding.linear_1.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_fc.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"time_embedding.linear_2.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_proj.weight"], |
|
"time_embedding.linear_2.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_proj.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"proj_in.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.input_proj.weight"], |
|
"proj_in.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.input_proj.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"embedding_proj_norm.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.0.weight"], |
|
"embedding_proj_norm.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.0.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"embedding_proj.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.1.weight"], |
|
"embedding_proj.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.1.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{"positional_embedding": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.pos_emb"][None, :]} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"norm_in.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_pre.weight"], |
|
"norm_in.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_pre.bias"], |
|
} |
|
) |
|
|
|
|
|
for idx in range(len(model.transformer_blocks)): |
|
diffusers_transformer_prefix = f"transformer_blocks.{idx}" |
|
original_transformer_prefix = f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.backbone.resblocks.{idx}" |
|
|
|
|
|
diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1" |
|
original_attention_prefix = f"{original_transformer_prefix}.attn" |
|
diffusers_checkpoint.update( |
|
prior_attention_to_diffusers( |
|
checkpoint, |
|
diffusers_attention_prefix=diffusers_attention_prefix, |
|
original_attention_prefix=original_attention_prefix, |
|
attention_head_dim=model.attention_head_dim, |
|
) |
|
) |
|
|
|
|
|
diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff" |
|
original_ff_prefix = f"{original_transformer_prefix}.mlp" |
|
diffusers_checkpoint.update( |
|
prior_ff_to_diffusers( |
|
checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix |
|
) |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[ |
|
f"{original_transformer_prefix}.ln_1.weight" |
|
], |
|
f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[ |
|
f"{original_transformer_prefix}.ln_2.weight" |
|
], |
|
f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"norm_out.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_post.weight"], |
|
"norm_out.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_post.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.output_proj.weight"], |
|
"proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.output_proj.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MC_TABLE = [ |
|
[], |
|
[[0, 1, 0, 2, 0, 4]], |
|
[[1, 0, 1, 5, 1, 3]], |
|
[[0, 4, 1, 5, 0, 2], [1, 5, 1, 3, 0, 2]], |
|
[[2, 0, 2, 3, 2, 6]], |
|
[[0, 1, 2, 3, 0, 4], [2, 3, 2, 6, 0, 4]], |
|
[[1, 0, 1, 5, 1, 3], [2, 6, 0, 2, 3, 2]], |
|
[[3, 2, 2, 6, 3, 1], [3, 1, 2, 6, 1, 5], [1, 5, 2, 6, 0, 4]], |
|
[[3, 1, 3, 7, 3, 2]], |
|
[[0, 2, 0, 4, 0, 1], [3, 7, 2, 3, 1, 3]], |
|
[[1, 5, 3, 7, 1, 0], [3, 7, 3, 2, 1, 0]], |
|
[[2, 0, 0, 4, 2, 3], [2, 3, 0, 4, 3, 7], [3, 7, 0, 4, 1, 5]], |
|
[[2, 0, 3, 1, 2, 6], [3, 1, 3, 7, 2, 6]], |
|
[[1, 3, 3, 7, 1, 0], [1, 0, 3, 7, 0, 4], [0, 4, 3, 7, 2, 6]], |
|
[[0, 1, 1, 5, 0, 2], [0, 2, 1, 5, 2, 6], [2, 6, 1, 5, 3, 7]], |
|
[[0, 4, 1, 5, 3, 7], [0, 4, 3, 7, 2, 6]], |
|
[[4, 0, 4, 6, 4, 5]], |
|
[[0, 2, 4, 6, 0, 1], [4, 6, 4, 5, 0, 1]], |
|
[[1, 5, 1, 3, 1, 0], [4, 6, 5, 4, 0, 4]], |
|
[[5, 1, 1, 3, 5, 4], [5, 4, 1, 3, 4, 6], [4, 6, 1, 3, 0, 2]], |
|
[[2, 0, 2, 3, 2, 6], [4, 5, 0, 4, 6, 4]], |
|
[[6, 4, 4, 5, 6, 2], [6, 2, 4, 5, 2, 3], [2, 3, 4, 5, 0, 1]], |
|
[[2, 6, 2, 0, 3, 2], [1, 0, 1, 5, 3, 1], [6, 4, 5, 4, 0, 4]], |
|
[[1, 3, 5, 4, 1, 5], [1, 3, 4, 6, 5, 4], [1, 3, 3, 2, 4, 6], [3, 2, 2, 6, 4, 6]], |
|
[[3, 1, 3, 7, 3, 2], [6, 4, 5, 4, 0, 4]], |
|
[[4, 5, 0, 1, 4, 6], [0, 1, 0, 2, 4, 6], [7, 3, 2, 3, 1, 3]], |
|
[[3, 2, 1, 0, 3, 7], [1, 0, 1, 5, 3, 7], [6, 4, 5, 4, 0, 4]], |
|
[[3, 7, 3, 2, 1, 5], [3, 2, 6, 4, 1, 5], [1, 5, 6, 4, 5, 4], [3, 2, 2, 0, 6, 4]], |
|
[[3, 7, 2, 6, 3, 1], [2, 6, 2, 0, 3, 1], [5, 4, 0, 4, 6, 4]], |
|
[[1, 0, 1, 3, 5, 4], [1, 3, 2, 6, 5, 4], [1, 3, 3, 7, 2, 6], [5, 4, 2, 6, 4, 6]], |
|
[[0, 1, 1, 5, 0, 2], [0, 2, 1, 5, 2, 6], [2, 6, 1, 5, 3, 7], [4, 5, 0, 4, 4, 6]], |
|
[[6, 2, 4, 6, 4, 5], [4, 5, 5, 1, 6, 2], [6, 2, 5, 1, 7, 3]], |
|
[[5, 1, 5, 4, 5, 7]], |
|
[[0, 1, 0, 2, 0, 4], [5, 7, 1, 5, 4, 5]], |
|
[[1, 0, 5, 4, 1, 3], [5, 4, 5, 7, 1, 3]], |
|
[[4, 5, 5, 7, 4, 0], [4, 0, 5, 7, 0, 2], [0, 2, 5, 7, 1, 3]], |
|
[[2, 0, 2, 3, 2, 6], [7, 5, 1, 5, 4, 5]], |
|
[[2, 6, 0, 4, 2, 3], [0, 4, 0, 1, 2, 3], [7, 5, 1, 5, 4, 5]], |
|
[[5, 7, 1, 3, 5, 4], [1, 3, 1, 0, 5, 4], [6, 2, 0, 2, 3, 2]], |
|
[[3, 1, 3, 2, 7, 5], [3, 2, 0, 4, 7, 5], [3, 2, 2, 6, 0, 4], [7, 5, 0, 4, 5, 4]], |
|
[[3, 7, 3, 2, 3, 1], [5, 4, 7, 5, 1, 5]], |
|
[[0, 4, 0, 1, 2, 0], [3, 1, 3, 7, 2, 3], [4, 5, 7, 5, 1, 5]], |
|
[[7, 3, 3, 2, 7, 5], [7, 5, 3, 2, 5, 4], [5, 4, 3, 2, 1, 0]], |
|
[[0, 4, 2, 3, 0, 2], [0, 4, 3, 7, 2, 3], [0, 4, 4, 5, 3, 7], [4, 5, 5, 7, 3, 7]], |
|
[[2, 0, 3, 1, 2, 6], [3, 1, 3, 7, 2, 6], [4, 5, 7, 5, 1, 5]], |
|
[[1, 3, 3, 7, 1, 0], [1, 0, 3, 7, 0, 4], [0, 4, 3, 7, 2, 6], [5, 7, 1, 5, 5, 4]], |
|
[[2, 6, 2, 0, 3, 7], [2, 0, 4, 5, 3, 7], [3, 7, 4, 5, 7, 5], [2, 0, 0, 1, 4, 5]], |
|
[[4, 0, 5, 4, 5, 7], [5, 7, 7, 3, 4, 0], [4, 0, 7, 3, 6, 2]], |
|
[[4, 6, 5, 7, 4, 0], [5, 7, 5, 1, 4, 0]], |
|
[[1, 0, 0, 2, 1, 5], [1, 5, 0, 2, 5, 7], [5, 7, 0, 2, 4, 6]], |
|
[[0, 4, 4, 6, 0, 1], [0, 1, 4, 6, 1, 3], [1, 3, 4, 6, 5, 7]], |
|
[[0, 2, 4, 6, 5, 7], [0, 2, 5, 7, 1, 3]], |
|
[[5, 1, 4, 0, 5, 7], [4, 0, 4, 6, 5, 7], [3, 2, 6, 2, 0, 2]], |
|
[[2, 3, 2, 6, 0, 1], [2, 6, 7, 5, 0, 1], [0, 1, 7, 5, 1, 5], [2, 6, 6, 4, 7, 5]], |
|
[[0, 4, 4, 6, 0, 1], [0, 1, 4, 6, 1, 3], [1, 3, 4, 6, 5, 7], [2, 6, 0, 2, 2, 3]], |
|
[[3, 1, 2, 3, 2, 6], [2, 6, 6, 4, 3, 1], [3, 1, 6, 4, 7, 5]], |
|
[[4, 6, 5, 7, 4, 0], [5, 7, 5, 1, 4, 0], [2, 3, 1, 3, 7, 3]], |
|
[[1, 0, 0, 2, 1, 5], [1, 5, 0, 2, 5, 7], [5, 7, 0, 2, 4, 6], [3, 2, 1, 3, 3, 7]], |
|
[[0, 1, 0, 4, 2, 3], [0, 4, 5, 7, 2, 3], [0, 4, 4, 6, 5, 7], [2, 3, 5, 7, 3, 7]], |
|
[[7, 5, 3, 7, 3, 2], [3, 2, 2, 0, 7, 5], [7, 5, 2, 0, 6, 4]], |
|
[[0, 4, 4, 6, 5, 7], [0, 4, 5, 7, 1, 5], [0, 2, 1, 3, 3, 7], [3, 7, 2, 6, 0, 2]], |
|
[ |
|
[3, 1, 7, 3, 6, 2], |
|
[6, 2, 0, 1, 3, 1], |
|
[6, 4, 0, 1, 6, 2], |
|
[6, 4, 5, 1, 0, 1], |
|
[6, 4, 7, 5, 5, 1], |
|
], |
|
[ |
|
[4, 0, 6, 4, 7, 5], |
|
[7, 5, 1, 0, 4, 0], |
|
[7, 3, 1, 0, 7, 5], |
|
[7, 3, 2, 0, 1, 0], |
|
[7, 3, 6, 2, 2, 0], |
|
], |
|
[[7, 3, 6, 2, 6, 4], [7, 5, 7, 3, 6, 4]], |
|
[[6, 2, 6, 7, 6, 4]], |
|
[[0, 4, 0, 1, 0, 2], [6, 7, 4, 6, 2, 6]], |
|
[[1, 0, 1, 5, 1, 3], [7, 6, 4, 6, 2, 6]], |
|
[[1, 3, 0, 2, 1, 5], [0, 2, 0, 4, 1, 5], [7, 6, 4, 6, 2, 6]], |
|
[[2, 3, 6, 7, 2, 0], [6, 7, 6, 4, 2, 0]], |
|
[[4, 0, 0, 1, 4, 6], [4, 6, 0, 1, 6, 7], [6, 7, 0, 1, 2, 3]], |
|
[[6, 4, 2, 0, 6, 7], [2, 0, 2, 3, 6, 7], [5, 1, 3, 1, 0, 1]], |
|
[[1, 5, 1, 3, 0, 4], [1, 3, 7, 6, 0, 4], [0, 4, 7, 6, 4, 6], [1, 3, 3, 2, 7, 6]], |
|
[[3, 2, 3, 1, 3, 7], [6, 4, 2, 6, 7, 6]], |
|
[[3, 7, 3, 2, 1, 3], [0, 2, 0, 4, 1, 0], [7, 6, 4, 6, 2, 6]], |
|
[[1, 5, 3, 7, 1, 0], [3, 7, 3, 2, 1, 0], [4, 6, 2, 6, 7, 6]], |
|
[[2, 0, 0, 4, 2, 3], [2, 3, 0, 4, 3, 7], [3, 7, 0, 4, 1, 5], [6, 4, 2, 6, 6, 7]], |
|
[[7, 6, 6, 4, 7, 3], [7, 3, 6, 4, 3, 1], [3, 1, 6, 4, 2, 0]], |
|
[[0, 1, 4, 6, 0, 4], [0, 1, 6, 7, 4, 6], [0, 1, 1, 3, 6, 7], [1, 3, 3, 7, 6, 7]], |
|
[[0, 2, 0, 1, 4, 6], [0, 1, 3, 7, 4, 6], [0, 1, 1, 5, 3, 7], [4, 6, 3, 7, 6, 7]], |
|
[[7, 3, 6, 7, 6, 4], [6, 4, 4, 0, 7, 3], [7, 3, 4, 0, 5, 1]], |
|
[[4, 0, 6, 2, 4, 5], [6, 2, 6, 7, 4, 5]], |
|
[[2, 6, 6, 7, 2, 0], [2, 0, 6, 7, 0, 1], [0, 1, 6, 7, 4, 5]], |
|
[[6, 7, 4, 5, 6, 2], [4, 5, 4, 0, 6, 2], [3, 1, 0, 1, 5, 1]], |
|
[[2, 0, 2, 6, 3, 1], [2, 6, 4, 5, 3, 1], [2, 6, 6, 7, 4, 5], [3, 1, 4, 5, 1, 5]], |
|
[[0, 2, 2, 3, 0, 4], [0, 4, 2, 3, 4, 5], [4, 5, 2, 3, 6, 7]], |
|
[[0, 1, 2, 3, 6, 7], [0, 1, 6, 7, 4, 5]], |
|
[[0, 2, 2, 3, 0, 4], [0, 4, 2, 3, 4, 5], [4, 5, 2, 3, 6, 7], [1, 3, 0, 1, 1, 5]], |
|
[[5, 4, 1, 5, 1, 3], [1, 3, 3, 2, 5, 4], [5, 4, 3, 2, 7, 6]], |
|
[[4, 0, 6, 2, 4, 5], [6, 2, 6, 7, 4, 5], [1, 3, 7, 3, 2, 3]], |
|
[[2, 6, 6, 7, 2, 0], [2, 0, 6, 7, 0, 1], [0, 1, 6, 7, 4, 5], [3, 7, 2, 3, 3, 1]], |
|
[[0, 1, 1, 5, 3, 7], [0, 1, 3, 7, 2, 3], [0, 4, 2, 6, 6, 7], [6, 7, 4, 5, 0, 4]], |
|
[ |
|
[6, 2, 7, 6, 5, 4], |
|
[5, 4, 0, 2, 6, 2], |
|
[5, 1, 0, 2, 5, 4], |
|
[5, 1, 3, 2, 0, 2], |
|
[5, 1, 7, 3, 3, 2], |
|
], |
|
[[3, 1, 3, 7, 2, 0], [3, 7, 5, 4, 2, 0], [2, 0, 5, 4, 0, 4], [3, 7, 7, 6, 5, 4]], |
|
[[1, 0, 3, 1, 3, 7], [3, 7, 7, 6, 1, 0], [1, 0, 7, 6, 5, 4]], |
|
[ |
|
[1, 0, 5, 1, 7, 3], |
|
[7, 3, 2, 0, 1, 0], |
|
[7, 6, 2, 0, 7, 3], |
|
[7, 6, 4, 0, 2, 0], |
|
[7, 6, 5, 4, 4, 0], |
|
], |
|
[[7, 6, 5, 4, 5, 1], [7, 3, 7, 6, 5, 1]], |
|
[[5, 7, 5, 1, 5, 4], [6, 2, 7, 6, 4, 6]], |
|
[[0, 2, 0, 4, 1, 0], [5, 4, 5, 7, 1, 5], [2, 6, 7, 6, 4, 6]], |
|
[[1, 0, 5, 4, 1, 3], [5, 4, 5, 7, 1, 3], [2, 6, 7, 6, 4, 6]], |
|
[[4, 5, 5, 7, 4, 0], [4, 0, 5, 7, 0, 2], [0, 2, 5, 7, 1, 3], [6, 7, 4, 6, 6, 2]], |
|
[[2, 3, 6, 7, 2, 0], [6, 7, 6, 4, 2, 0], [1, 5, 4, 5, 7, 5]], |
|
[[4, 0, 0, 1, 4, 6], [4, 6, 0, 1, 6, 7], [6, 7, 0, 1, 2, 3], [5, 1, 4, 5, 5, 7]], |
|
[[0, 2, 2, 3, 6, 7], [0, 2, 6, 7, 4, 6], [0, 1, 4, 5, 5, 7], [5, 7, 1, 3, 0, 1]], |
|
[ |
|
[5, 4, 7, 5, 3, 1], |
|
[3, 1, 0, 4, 5, 4], |
|
[3, 2, 0, 4, 3, 1], |
|
[3, 2, 6, 4, 0, 4], |
|
[3, 2, 7, 6, 6, 4], |
|
], |
|
[[5, 4, 5, 7, 1, 5], [3, 7, 3, 2, 1, 3], [4, 6, 2, 6, 7, 6]], |
|
[[1, 0, 0, 2, 0, 4], [1, 5, 5, 4, 5, 7], [3, 2, 1, 3, 3, 7], [2, 6, 7, 6, 4, 6]], |
|
[[7, 3, 3, 2, 7, 5], [7, 5, 3, 2, 5, 4], [5, 4, 3, 2, 1, 0], [6, 2, 7, 6, 6, 4]], |
|
[ |
|
[0, 4, 2, 3, 0, 2], |
|
[0, 4, 3, 7, 2, 3], |
|
[0, 4, 4, 5, 3, 7], |
|
[4, 5, 5, 7, 3, 7], |
|
[6, 7, 4, 6, 2, 6], |
|
], |
|
[[7, 6, 6, 4, 7, 3], [7, 3, 6, 4, 3, 1], [3, 1, 6, 4, 2, 0], [5, 4, 7, 5, 5, 1]], |
|
[ |
|
[0, 1, 4, 6, 0, 4], |
|
[0, 1, 6, 7, 4, 6], |
|
[0, 1, 1, 3, 6, 7], |
|
[1, 3, 3, 7, 6, 7], |
|
[5, 7, 1, 5, 4, 5], |
|
], |
|
[ |
|
[6, 7, 4, 6, 0, 2], |
|
[0, 2, 3, 7, 6, 7], |
|
[0, 1, 3, 7, 0, 2], |
|
[0, 1, 5, 7, 3, 7], |
|
[0, 1, 4, 5, 5, 7], |
|
], |
|
[[4, 0, 6, 7, 4, 6], [4, 0, 7, 3, 6, 7], [4, 0, 5, 7, 7, 3], [4, 5, 5, 7, 4, 0]], |
|
[[7, 5, 5, 1, 7, 6], [7, 6, 5, 1, 6, 2], [6, 2, 5, 1, 4, 0]], |
|
[[0, 2, 1, 5, 0, 1], [0, 2, 5, 7, 1, 5], [0, 2, 2, 6, 5, 7], [2, 6, 6, 7, 5, 7]], |
|
[[1, 3, 1, 0, 5, 7], [1, 0, 2, 6, 5, 7], [5, 7, 2, 6, 7, 6], [1, 0, 0, 4, 2, 6]], |
|
[[2, 0, 6, 2, 6, 7], [6, 7, 7, 5, 2, 0], [2, 0, 7, 5, 3, 1]], |
|
[[0, 4, 0, 2, 1, 5], [0, 2, 6, 7, 1, 5], [0, 2, 2, 3, 6, 7], [1, 5, 6, 7, 5, 7]], |
|
[[7, 6, 5, 7, 5, 1], [5, 1, 1, 0, 7, 6], [7, 6, 1, 0, 3, 2]], |
|
[ |
|
[2, 0, 3, 2, 7, 6], |
|
[7, 6, 4, 0, 2, 0], |
|
[7, 5, 4, 0, 7, 6], |
|
[7, 5, 1, 0, 4, 0], |
|
[7, 5, 3, 1, 1, 0], |
|
], |
|
[[7, 5, 3, 1, 3, 2], [7, 6, 7, 5, 3, 2]], |
|
[[7, 5, 5, 1, 7, 6], [7, 6, 5, 1, 6, 2], [6, 2, 5, 1, 4, 0], [3, 1, 7, 3, 3, 2]], |
|
[ |
|
[0, 2, 1, 5, 0, 1], |
|
[0, 2, 5, 7, 1, 5], |
|
[0, 2, 2, 6, 5, 7], |
|
[2, 6, 6, 7, 5, 7], |
|
[3, 7, 2, 3, 1, 3], |
|
], |
|
[ |
|
[3, 7, 2, 3, 0, 1], |
|
[0, 1, 5, 7, 3, 7], |
|
[0, 4, 5, 7, 0, 1], |
|
[0, 4, 6, 7, 5, 7], |
|
[0, 4, 2, 6, 6, 7], |
|
], |
|
[[2, 0, 3, 7, 2, 3], [2, 0, 7, 5, 3, 7], [2, 0, 6, 7, 7, 5], [2, 6, 6, 7, 2, 0]], |
|
[ |
|
[5, 7, 1, 5, 0, 4], |
|
[0, 4, 6, 7, 5, 7], |
|
[0, 2, 6, 7, 0, 4], |
|
[0, 2, 3, 7, 6, 7], |
|
[0, 2, 1, 3, 3, 7], |
|
], |
|
[[1, 0, 5, 7, 1, 5], [1, 0, 7, 6, 5, 7], [1, 0, 3, 7, 7, 6], [1, 3, 3, 7, 1, 0]], |
|
[[0, 2, 0, 1, 0, 4], [3, 7, 6, 7, 5, 7]], |
|
[[7, 5, 7, 3, 7, 6]], |
|
[[7, 3, 7, 5, 7, 6]], |
|
[[0, 1, 0, 2, 0, 4], [6, 7, 3, 7, 5, 7]], |
|
[[1, 3, 1, 0, 1, 5], [7, 6, 3, 7, 5, 7]], |
|
[[0, 4, 1, 5, 0, 2], [1, 5, 1, 3, 0, 2], [6, 7, 3, 7, 5, 7]], |
|
[[2, 6, 2, 0, 2, 3], [7, 5, 6, 7, 3, 7]], |
|
[[0, 1, 2, 3, 0, 4], [2, 3, 2, 6, 0, 4], [5, 7, 6, 7, 3, 7]], |
|
[[1, 5, 1, 3, 0, 1], [2, 3, 2, 6, 0, 2], [5, 7, 6, 7, 3, 7]], |
|
[[3, 2, 2, 6, 3, 1], [3, 1, 2, 6, 1, 5], [1, 5, 2, 6, 0, 4], [7, 6, 3, 7, 7, 5]], |
|
[[3, 1, 7, 5, 3, 2], [7, 5, 7, 6, 3, 2]], |
|
[[7, 6, 3, 2, 7, 5], [3, 2, 3, 1, 7, 5], [4, 0, 1, 0, 2, 0]], |
|
[[5, 7, 7, 6, 5, 1], [5, 1, 7, 6, 1, 0], [1, 0, 7, 6, 3, 2]], |
|
[[2, 3, 2, 0, 6, 7], [2, 0, 1, 5, 6, 7], [2, 0, 0, 4, 1, 5], [6, 7, 1, 5, 7, 5]], |
|
[[6, 2, 2, 0, 6, 7], [6, 7, 2, 0, 7, 5], [7, 5, 2, 0, 3, 1]], |
|
[[0, 4, 0, 1, 2, 6], [0, 1, 5, 7, 2, 6], [2, 6, 5, 7, 6, 7], [0, 1, 1, 3, 5, 7]], |
|
[[1, 5, 0, 2, 1, 0], [1, 5, 2, 6, 0, 2], [1, 5, 5, 7, 2, 6], [5, 7, 7, 6, 2, 6]], |
|
[[5, 1, 7, 5, 7, 6], [7, 6, 6, 2, 5, 1], [5, 1, 6, 2, 4, 0]], |
|
[[4, 5, 4, 0, 4, 6], [7, 3, 5, 7, 6, 7]], |
|
[[0, 2, 4, 6, 0, 1], [4, 6, 4, 5, 0, 1], [3, 7, 5, 7, 6, 7]], |
|
[[4, 6, 4, 5, 0, 4], [1, 5, 1, 3, 0, 1], [6, 7, 3, 7, 5, 7]], |
|
[[5, 1, 1, 3, 5, 4], [5, 4, 1, 3, 4, 6], [4, 6, 1, 3, 0, 2], [7, 3, 5, 7, 7, 6]], |
|
[[2, 3, 2, 6, 0, 2], [4, 6, 4, 5, 0, 4], [3, 7, 5, 7, 6, 7]], |
|
[[6, 4, 4, 5, 6, 2], [6, 2, 4, 5, 2, 3], [2, 3, 4, 5, 0, 1], [7, 5, 6, 7, 7, 3]], |
|
[[0, 1, 1, 5, 1, 3], [0, 2, 2, 3, 2, 6], [4, 5, 0, 4, 4, 6], [5, 7, 6, 7, 3, 7]], |
|
[ |
|
[1, 3, 5, 4, 1, 5], |
|
[1, 3, 4, 6, 5, 4], |
|
[1, 3, 3, 2, 4, 6], |
|
[3, 2, 2, 6, 4, 6], |
|
[7, 6, 3, 7, 5, 7], |
|
], |
|
[[3, 1, 7, 5, 3, 2], [7, 5, 7, 6, 3, 2], [0, 4, 6, 4, 5, 4]], |
|
[[1, 0, 0, 2, 4, 6], [1, 0, 4, 6, 5, 4], [1, 3, 5, 7, 7, 6], [7, 6, 3, 2, 1, 3]], |
|
[[5, 7, 7, 6, 5, 1], [5, 1, 7, 6, 1, 0], [1, 0, 7, 6, 3, 2], [4, 6, 5, 4, 4, 0]], |
|
[ |
|
[7, 5, 6, 7, 2, 3], |
|
[2, 3, 1, 5, 7, 5], |
|
[2, 0, 1, 5, 2, 3], |
|
[2, 0, 4, 5, 1, 5], |
|
[2, 0, 6, 4, 4, 5], |
|
], |
|
[[6, 2, 2, 0, 6, 7], [6, 7, 2, 0, 7, 5], [7, 5, 2, 0, 3, 1], [4, 0, 6, 4, 4, 5]], |
|
[ |
|
[4, 6, 5, 4, 1, 0], |
|
[1, 0, 2, 6, 4, 6], |
|
[1, 3, 2, 6, 1, 0], |
|
[1, 3, 7, 6, 2, 6], |
|
[1, 3, 5, 7, 7, 6], |
|
], |
|
[ |
|
[1, 5, 0, 2, 1, 0], |
|
[1, 5, 2, 6, 0, 2], |
|
[1, 5, 5, 7, 2, 6], |
|
[5, 7, 7, 6, 2, 6], |
|
[4, 6, 5, 4, 0, 4], |
|
], |
|
[[5, 1, 4, 6, 5, 4], [5, 1, 6, 2, 4, 6], [5, 1, 7, 6, 6, 2], [5, 7, 7, 6, 5, 1]], |
|
[[5, 4, 7, 6, 5, 1], [7, 6, 7, 3, 5, 1]], |
|
[[7, 3, 5, 1, 7, 6], [5, 1, 5, 4, 7, 6], [2, 0, 4, 0, 1, 0]], |
|
[[3, 1, 1, 0, 3, 7], [3, 7, 1, 0, 7, 6], [7, 6, 1, 0, 5, 4]], |
|
[[0, 2, 0, 4, 1, 3], [0, 4, 6, 7, 1, 3], [1, 3, 6, 7, 3, 7], [0, 4, 4, 5, 6, 7]], |
|
[[5, 4, 7, 6, 5, 1], [7, 6, 7, 3, 5, 1], [0, 2, 3, 2, 6, 2]], |
|
[[1, 5, 5, 4, 7, 6], [1, 5, 7, 6, 3, 7], [1, 0, 3, 2, 2, 6], [2, 6, 0, 4, 1, 0]], |
|
[[3, 1, 1, 0, 3, 7], [3, 7, 1, 0, 7, 6], [7, 6, 1, 0, 5, 4], [2, 0, 3, 2, 2, 6]], |
|
[ |
|
[2, 3, 6, 2, 4, 0], |
|
[4, 0, 1, 3, 2, 3], |
|
[4, 5, 1, 3, 4, 0], |
|
[4, 5, 7, 3, 1, 3], |
|
[4, 5, 6, 7, 7, 3], |
|
], |
|
[[1, 5, 5, 4, 1, 3], [1, 3, 5, 4, 3, 2], [3, 2, 5, 4, 7, 6]], |
|
[[1, 5, 5, 4, 1, 3], [1, 3, 5, 4, 3, 2], [3, 2, 5, 4, 7, 6], [0, 4, 1, 0, 0, 2]], |
|
[[1, 0, 5, 4, 7, 6], [1, 0, 7, 6, 3, 2]], |
|
[[2, 3, 0, 2, 0, 4], [0, 4, 4, 5, 2, 3], [2, 3, 4, 5, 6, 7]], |
|
[[1, 3, 1, 5, 0, 2], [1, 5, 7, 6, 0, 2], [1, 5, 5, 4, 7, 6], [0, 2, 7, 6, 2, 6]], |
|
[ |
|
[5, 1, 4, 5, 6, 7], |
|
[6, 7, 3, 1, 5, 1], |
|
[6, 2, 3, 1, 6, 7], |
|
[6, 2, 0, 1, 3, 1], |
|
[6, 2, 4, 0, 0, 1], |
|
], |
|
[[6, 7, 2, 6, 2, 0], [2, 0, 0, 1, 6, 7], [6, 7, 0, 1, 4, 5]], |
|
[[6, 2, 4, 0, 4, 5], [6, 7, 6, 2, 4, 5]], |
|
[[6, 7, 7, 3, 6, 4], [6, 4, 7, 3, 4, 0], [4, 0, 7, 3, 5, 1]], |
|
[[1, 5, 1, 0, 3, 7], [1, 0, 4, 6, 3, 7], [1, 0, 0, 2, 4, 6], [3, 7, 4, 6, 7, 6]], |
|
[[1, 0, 3, 7, 1, 3], [1, 0, 7, 6, 3, 7], [1, 0, 0, 4, 7, 6], [0, 4, 4, 6, 7, 6]], |
|
[[6, 4, 7, 6, 7, 3], [7, 3, 3, 1, 6, 4], [6, 4, 3, 1, 2, 0]], |
|
[[6, 7, 7, 3, 6, 4], [6, 4, 7, 3, 4, 0], [4, 0, 7, 3, 5, 1], [2, 3, 6, 2, 2, 0]], |
|
[ |
|
[7, 6, 3, 7, 1, 5], |
|
[1, 5, 4, 6, 7, 6], |
|
[1, 0, 4, 6, 1, 5], |
|
[1, 0, 2, 6, 4, 6], |
|
[1, 0, 3, 2, 2, 6], |
|
], |
|
[ |
|
[1, 0, 3, 7, 1, 3], |
|
[1, 0, 7, 6, 3, 7], |
|
[1, 0, 0, 4, 7, 6], |
|
[0, 4, 4, 6, 7, 6], |
|
[2, 6, 0, 2, 3, 2], |
|
], |
|
[[3, 1, 7, 6, 3, 7], [3, 1, 6, 4, 7, 6], [3, 1, 2, 6, 6, 4], [3, 2, 2, 6, 3, 1]], |
|
[[3, 2, 3, 1, 7, 6], [3, 1, 0, 4, 7, 6], [7, 6, 0, 4, 6, 4], [3, 1, 1, 5, 0, 4]], |
|
[ |
|
[0, 1, 2, 0, 6, 4], |
|
[6, 4, 5, 1, 0, 1], |
|
[6, 7, 5, 1, 6, 4], |
|
[6, 7, 3, 1, 5, 1], |
|
[6, 7, 2, 3, 3, 1], |
|
], |
|
[[0, 1, 4, 0, 4, 6], [4, 6, 6, 7, 0, 1], [0, 1, 6, 7, 2, 3]], |
|
[[6, 7, 2, 3, 2, 0], [6, 4, 6, 7, 2, 0]], |
|
[ |
|
[2, 6, 0, 2, 1, 3], |
|
[1, 3, 7, 6, 2, 6], |
|
[1, 5, 7, 6, 1, 3], |
|
[1, 5, 4, 6, 7, 6], |
|
[1, 5, 0, 4, 4, 6], |
|
], |
|
[[1, 5, 1, 0, 1, 3], [4, 6, 7, 6, 2, 6]], |
|
[[0, 1, 2, 6, 0, 2], [0, 1, 6, 7, 2, 6], [0, 1, 4, 6, 6, 7], [0, 4, 4, 6, 0, 1]], |
|
[[6, 7, 6, 2, 6, 4]], |
|
[[6, 2, 7, 3, 6, 4], [7, 3, 7, 5, 6, 4]], |
|
[[7, 5, 6, 4, 7, 3], [6, 4, 6, 2, 7, 3], [1, 0, 2, 0, 4, 0]], |
|
[[6, 2, 7, 3, 6, 4], [7, 3, 7, 5, 6, 4], [0, 1, 5, 1, 3, 1]], |
|
[[2, 0, 0, 4, 1, 5], [2, 0, 1, 5, 3, 1], [2, 6, 3, 7, 7, 5], [7, 5, 6, 4, 2, 6]], |
|
[[3, 7, 7, 5, 3, 2], [3, 2, 7, 5, 2, 0], [2, 0, 7, 5, 6, 4]], |
|
[[3, 2, 3, 7, 1, 0], [3, 7, 6, 4, 1, 0], [3, 7, 7, 5, 6, 4], [1, 0, 6, 4, 0, 4]], |
|
[[3, 7, 7, 5, 3, 2], [3, 2, 7, 5, 2, 0], [2, 0, 7, 5, 6, 4], [1, 5, 3, 1, 1, 0]], |
|
[ |
|
[7, 3, 5, 7, 4, 6], |
|
[4, 6, 2, 3, 7, 3], |
|
[4, 0, 2, 3, 4, 6], |
|
[4, 0, 1, 3, 2, 3], |
|
[4, 0, 5, 1, 1, 3], |
|
], |
|
[[2, 3, 3, 1, 2, 6], [2, 6, 3, 1, 6, 4], [6, 4, 3, 1, 7, 5]], |
|
[[2, 3, 3, 1, 2, 6], [2, 6, 3, 1, 6, 4], [6, 4, 3, 1, 7, 5], [0, 1, 2, 0, 0, 4]], |
|
[[1, 0, 1, 5, 3, 2], [1, 5, 4, 6, 3, 2], [3, 2, 4, 6, 2, 6], [1, 5, 5, 7, 4, 6]], |
|
[ |
|
[0, 2, 4, 0, 5, 1], |
|
[5, 1, 3, 2, 0, 2], |
|
[5, 7, 3, 2, 5, 1], |
|
[5, 7, 6, 2, 3, 2], |
|
[5, 7, 4, 6, 6, 2], |
|
], |
|
[[2, 0, 3, 1, 7, 5], [2, 0, 7, 5, 6, 4]], |
|
[[4, 6, 0, 4, 0, 1], [0, 1, 1, 3, 4, 6], [4, 6, 1, 3, 5, 7]], |
|
[[0, 2, 1, 0, 1, 5], [1, 5, 5, 7, 0, 2], [0, 2, 5, 7, 4, 6]], |
|
[[5, 7, 4, 6, 4, 0], [5, 1, 5, 7, 4, 0]], |
|
[[5, 4, 4, 0, 5, 7], [5, 7, 4, 0, 7, 3], [7, 3, 4, 0, 6, 2]], |
|
[[0, 1, 0, 2, 4, 5], [0, 2, 3, 7, 4, 5], [4, 5, 3, 7, 5, 7], [0, 2, 2, 6, 3, 7]], |
|
[[5, 4, 4, 0, 5, 7], [5, 7, 4, 0, 7, 3], [7, 3, 4, 0, 6, 2], [1, 0, 5, 1, 1, 3]], |
|
[ |
|
[1, 5, 3, 1, 2, 0], |
|
[2, 0, 4, 5, 1, 5], |
|
[2, 6, 4, 5, 2, 0], |
|
[2, 6, 7, 5, 4, 5], |
|
[2, 6, 3, 7, 7, 5], |
|
], |
|
[[2, 3, 0, 4, 2, 0], [2, 3, 4, 5, 0, 4], [2, 3, 3, 7, 4, 5], [3, 7, 7, 5, 4, 5]], |
|
[[3, 2, 7, 3, 7, 5], [7, 5, 5, 4, 3, 2], [3, 2, 5, 4, 1, 0]], |
|
[ |
|
[2, 3, 0, 4, 2, 0], |
|
[2, 3, 4, 5, 0, 4], |
|
[2, 3, 3, 7, 4, 5], |
|
[3, 7, 7, 5, 4, 5], |
|
[1, 5, 3, 1, 0, 1], |
|
], |
|
[[3, 2, 1, 5, 3, 1], [3, 2, 5, 4, 1, 5], [3, 2, 7, 5, 5, 4], [3, 7, 7, 5, 3, 2]], |
|
[[2, 6, 2, 3, 0, 4], [2, 3, 7, 5, 0, 4], [2, 3, 3, 1, 7, 5], [0, 4, 7, 5, 4, 5]], |
|
[ |
|
[3, 2, 1, 3, 5, 7], |
|
[5, 7, 6, 2, 3, 2], |
|
[5, 4, 6, 2, 5, 7], |
|
[5, 4, 0, 2, 6, 2], |
|
[5, 4, 1, 0, 0, 2], |
|
], |
|
[ |
|
[4, 5, 0, 4, 2, 6], |
|
[2, 6, 7, 5, 4, 5], |
|
[2, 3, 7, 5, 2, 6], |
|
[2, 3, 1, 5, 7, 5], |
|
[2, 3, 0, 1, 1, 5], |
|
], |
|
[[2, 3, 2, 0, 2, 6], [1, 5, 7, 5, 4, 5]], |
|
[[5, 7, 4, 5, 4, 0], [4, 0, 0, 2, 5, 7], [5, 7, 0, 2, 1, 3]], |
|
[[5, 4, 1, 0, 1, 3], [5, 7, 5, 4, 1, 3]], |
|
[[0, 2, 4, 5, 0, 4], [0, 2, 5, 7, 4, 5], [0, 2, 1, 5, 5, 7], [0, 1, 1, 5, 0, 2]], |
|
[[5, 4, 5, 1, 5, 7]], |
|
[[4, 6, 6, 2, 4, 5], [4, 5, 6, 2, 5, 1], [5, 1, 6, 2, 7, 3]], |
|
[[4, 6, 6, 2, 4, 5], [4, 5, 6, 2, 5, 1], [5, 1, 6, 2, 7, 3], [0, 2, 4, 0, 0, 1]], |
|
[[3, 7, 3, 1, 2, 6], [3, 1, 5, 4, 2, 6], [3, 1, 1, 0, 5, 4], [2, 6, 5, 4, 6, 4]], |
|
[ |
|
[6, 4, 2, 6, 3, 7], |
|
[3, 7, 5, 4, 6, 4], |
|
[3, 1, 5, 4, 3, 7], |
|
[3, 1, 0, 4, 5, 4], |
|
[3, 1, 2, 0, 0, 4], |
|
], |
|
[[2, 0, 2, 3, 6, 4], [2, 3, 1, 5, 6, 4], [6, 4, 1, 5, 4, 5], [2, 3, 3, 7, 1, 5]], |
|
[ |
|
[0, 4, 1, 0, 3, 2], |
|
[3, 2, 6, 4, 0, 4], |
|
[3, 7, 6, 4, 3, 2], |
|
[3, 7, 5, 4, 6, 4], |
|
[3, 7, 1, 5, 5, 4], |
|
], |
|
[ |
|
[1, 3, 0, 1, 4, 5], |
|
[4, 5, 7, 3, 1, 3], |
|
[4, 6, 7, 3, 4, 5], |
|
[4, 6, 2, 3, 7, 3], |
|
[4, 6, 0, 2, 2, 3], |
|
], |
|
[[3, 7, 3, 1, 3, 2], [5, 4, 6, 4, 0, 4]], |
|
[[3, 1, 2, 6, 3, 2], [3, 1, 6, 4, 2, 6], [3, 1, 1, 5, 6, 4], [1, 5, 5, 4, 6, 4]], |
|
[ |
|
[3, 1, 2, 6, 3, 2], |
|
[3, 1, 6, 4, 2, 6], |
|
[3, 1, 1, 5, 6, 4], |
|
[1, 5, 5, 4, 6, 4], |
|
[0, 4, 1, 0, 2, 0], |
|
], |
|
[[4, 5, 6, 4, 6, 2], [6, 2, 2, 3, 4, 5], [4, 5, 2, 3, 0, 1]], |
|
[[2, 3, 6, 4, 2, 6], [2, 3, 4, 5, 6, 4], [2, 3, 0, 4, 4, 5], [2, 0, 0, 4, 2, 3]], |
|
[[1, 3, 5, 1, 5, 4], [5, 4, 4, 6, 1, 3], [1, 3, 4, 6, 0, 2]], |
|
[[1, 3, 0, 4, 1, 0], [1, 3, 4, 6, 0, 4], [1, 3, 5, 4, 4, 6], [1, 5, 5, 4, 1, 3]], |
|
[[4, 6, 0, 2, 0, 1], [4, 5, 4, 6, 0, 1]], |
|
[[4, 6, 4, 0, 4, 5]], |
|
[[4, 0, 6, 2, 7, 3], [4, 0, 7, 3, 5, 1]], |
|
[[1, 5, 0, 1, 0, 2], [0, 2, 2, 6, 1, 5], [1, 5, 2, 6, 3, 7]], |
|
[[3, 7, 1, 3, 1, 0], [1, 0, 0, 4, 3, 7], [3, 7, 0, 4, 2, 6]], |
|
[[3, 1, 2, 0, 2, 6], [3, 7, 3, 1, 2, 6]], |
|
[[0, 4, 2, 0, 2, 3], [2, 3, 3, 7, 0, 4], [0, 4, 3, 7, 1, 5]], |
|
[[3, 7, 1, 5, 1, 0], [3, 2, 3, 7, 1, 0]], |
|
[[0, 4, 1, 3, 0, 1], [0, 4, 3, 7, 1, 3], [0, 4, 2, 3, 3, 7], [0, 2, 2, 3, 0, 4]], |
|
[[3, 7, 3, 1, 3, 2]], |
|
[[2, 6, 3, 2, 3, 1], [3, 1, 1, 5, 2, 6], [2, 6, 1, 5, 0, 4]], |
|
[[1, 5, 3, 2, 1, 3], [1, 5, 2, 6, 3, 2], [1, 5, 0, 2, 2, 6], [1, 0, 0, 2, 1, 5]], |
|
[[2, 3, 0, 1, 0, 4], [2, 6, 2, 3, 0, 4]], |
|
[[2, 3, 2, 0, 2, 6]], |
|
[[1, 5, 0, 4, 0, 2], [1, 3, 1, 5, 0, 2]], |
|
[[1, 5, 1, 0, 1, 3]], |
|
[[0, 2, 0, 1, 0, 4]], |
|
[], |
|
] |
|
|
|
|
|
def create_mc_lookup_table(): |
|
cases = torch.zeros(256, 5, 3, dtype=torch.long) |
|
masks = torch.zeros(256, 5, dtype=torch.bool) |
|
|
|
edge_to_index = { |
|
(0, 1): 0, |
|
(2, 3): 1, |
|
(4, 5): 2, |
|
(6, 7): 3, |
|
(0, 2): 4, |
|
(1, 3): 5, |
|
(4, 6): 6, |
|
(5, 7): 7, |
|
(0, 4): 8, |
|
(1, 5): 9, |
|
(2, 6): 10, |
|
(3, 7): 11, |
|
} |
|
|
|
for i, case in enumerate(MC_TABLE): |
|
for j, tri in enumerate(case): |
|
for k, (c1, c2) in enumerate(zip(tri[::2], tri[1::2])): |
|
cases[i, j, k] = edge_to_index[(c1, c2) if c1 < c2 else (c2, c1)] |
|
masks[i, j] = True |
|
return cases, masks |
|
|
|
|
|
RENDERER_CONFIG = {} |
|
|
|
|
|
def renderer_model_from_original_config(): |
|
model = ShapERenderer(**RENDERER_CONFIG) |
|
|
|
return model |
|
|
|
|
|
RENDERER_MLP_ORIGINAL_PREFIX = "renderer.nerstf" |
|
|
|
RENDERER_PARAMS_PROJ_ORIGINAL_PREFIX = "encoder.params_proj" |
|
|
|
|
|
def renderer_model_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): |
|
diffusers_checkpoint = {} |
|
diffusers_checkpoint.update( |
|
{f"mlp.{k}": checkpoint[f"{RENDERER_MLP_ORIGINAL_PREFIX}.{k}"] for k in model.mlp.state_dict().keys()} |
|
) |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"params_proj.{k}": checkpoint[f"{RENDERER_PARAMS_PROJ_ORIGINAL_PREFIX}.{k}"] |
|
for k in model.params_proj.state_dict().keys() |
|
} |
|
) |
|
|
|
diffusers_checkpoint.update({"void.background": model.state_dict()["void.background"]}) |
|
|
|
cases, masks = create_mc_lookup_table() |
|
|
|
diffusers_checkpoint.update({"mesh_decoder.cases": cases}) |
|
diffusers_checkpoint.update({"mesh_decoder.masks": masks}) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
|
|
|
|
|
|
def split_attentions(*, weight, bias, split, chunk_size): |
|
weights = [None] * split |
|
biases = [None] * split |
|
|
|
weights_biases_idx = 0 |
|
|
|
for starting_row_index in range(0, weight.shape[0], chunk_size): |
|
row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size) |
|
|
|
weight_rows = weight[row_indices, :] |
|
bias_rows = bias[row_indices] |
|
|
|
if weights[weights_biases_idx] is None: |
|
assert weights[weights_biases_idx] is None |
|
weights[weights_biases_idx] = weight_rows |
|
biases[weights_biases_idx] = bias_rows |
|
else: |
|
assert weights[weights_biases_idx] is not None |
|
weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows]) |
|
biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows]) |
|
|
|
weights_biases_idx = (weights_biases_idx + 1) % split |
|
|
|
return weights, biases |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def prior(*, args, checkpoint_map_location): |
|
print("loading prior") |
|
|
|
prior_checkpoint = torch.load(args.prior_checkpoint_path, map_location=checkpoint_map_location) |
|
|
|
prior_model = prior_model_from_original_config() |
|
|
|
prior_diffusers_checkpoint = prior_original_checkpoint_to_diffusers_checkpoint(prior_model, prior_checkpoint) |
|
|
|
del prior_checkpoint |
|
|
|
load_prior_checkpoint_to_model(prior_diffusers_checkpoint, prior_model) |
|
|
|
print("done loading prior") |
|
|
|
return prior_model |
|
|
|
|
|
def prior_image(*, args, checkpoint_map_location): |
|
print("loading prior_image") |
|
|
|
print(f"load checkpoint from {args.prior_image_checkpoint_path}") |
|
prior_checkpoint = torch.load(args.prior_image_checkpoint_path, map_location=checkpoint_map_location) |
|
|
|
prior_model = prior_image_model_from_original_config() |
|
|
|
prior_diffusers_checkpoint = prior_image_original_checkpoint_to_diffusers_checkpoint(prior_model, prior_checkpoint) |
|
|
|
del prior_checkpoint |
|
|
|
load_prior_checkpoint_to_model(prior_diffusers_checkpoint, prior_model) |
|
|
|
print("done loading prior_image") |
|
|
|
return prior_model |
|
|
|
|
|
def renderer(*, args, checkpoint_map_location): |
|
print(" loading renderer") |
|
|
|
renderer_checkpoint = torch.load(args.transmitter_checkpoint_path, map_location=checkpoint_map_location) |
|
|
|
renderer_model = renderer_model_from_original_config() |
|
|
|
renderer_diffusers_checkpoint = renderer_model_original_checkpoint_to_diffusers_checkpoint( |
|
renderer_model, renderer_checkpoint |
|
) |
|
|
|
del renderer_checkpoint |
|
|
|
load_checkpoint_to_model(renderer_diffusers_checkpoint, renderer_model, strict=True) |
|
|
|
print("done loading renderer") |
|
|
|
return renderer_model |
|
|
|
|
|
|
|
PRIOR_EXPECTED_MISSING_KEYS = ["clip_mean", "clip_std"] |
|
|
|
|
|
def load_prior_checkpoint_to_model(checkpoint, model): |
|
with tempfile.NamedTemporaryFile() as file: |
|
torch.save(checkpoint, file.name) |
|
del checkpoint |
|
missing_keys, unexpected_keys = model.load_state_dict(torch.load(file.name), strict=False) |
|
missing_keys = list(set(missing_keys) - set(PRIOR_EXPECTED_MISSING_KEYS)) |
|
|
|
if len(unexpected_keys) > 0: |
|
raise ValueError(f"Unexpected keys when loading prior model: {unexpected_keys}") |
|
if len(missing_keys) > 0: |
|
raise ValueError(f"Missing keys when loading prior model: {missing_keys}") |
|
|
|
|
|
def load_checkpoint_to_model(checkpoint, model, strict=False): |
|
with tempfile.NamedTemporaryFile() as file: |
|
torch.save(checkpoint, file.name) |
|
del checkpoint |
|
if strict: |
|
model.load_state_dict(torch.load(file.name), strict=True) |
|
else: |
|
load_checkpoint_and_dispatch(model, file.name, device_map="auto") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
|
|
parser.add_argument( |
|
"--prior_checkpoint_path", |
|
default=None, |
|
type=str, |
|
required=False, |
|
help="Path to the prior checkpoint to convert.", |
|
) |
|
|
|
parser.add_argument( |
|
"--prior_image_checkpoint_path", |
|
default=None, |
|
type=str, |
|
required=False, |
|
help="Path to the prior_image checkpoint to convert.", |
|
) |
|
|
|
parser.add_argument( |
|
"--transmitter_checkpoint_path", |
|
default=None, |
|
type=str, |
|
required=False, |
|
help="Path to the transmitter checkpoint to convert.", |
|
) |
|
|
|
parser.add_argument( |
|
"--checkpoint_load_device", |
|
default="cpu", |
|
type=str, |
|
required=False, |
|
help="The device passed to `map_location` when loading checkpoints.", |
|
) |
|
|
|
parser.add_argument( |
|
"--debug", |
|
default=None, |
|
type=str, |
|
required=False, |
|
help="Only run a specific stage of the convert script. Used for debugging", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
print(f"loading checkpoints to {args.checkpoint_load_device}") |
|
|
|
checkpoint_map_location = torch.device(args.checkpoint_load_device) |
|
|
|
if args.debug is not None: |
|
print(f"debug: only executing {args.debug}") |
|
|
|
if args.debug is None: |
|
print("YiYi TO-DO") |
|
elif args.debug == "prior": |
|
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location) |
|
prior_model.save_pretrained(args.dump_path) |
|
elif args.debug == "prior_image": |
|
prior_model = prior_image(args=args, checkpoint_map_location=checkpoint_map_location) |
|
prior_model.save_pretrained(args.dump_path) |
|
elif args.debug == "renderer": |
|
renderer_model = renderer(args=args, checkpoint_map_location=checkpoint_map_location) |
|
renderer_model.save_pretrained(args.dump_path) |
|
else: |
|
raise ValueError(f"unknown debug value : {args.debug}") |
|
|