|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
import tempfile |
|
|
|
|
|
sys.path.append("..") |
|
from test_examples_utils import ExamplesTestsAccelerate, run_command |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
logger = logging.getLogger() |
|
stream_handler = logging.StreamHandler(sys.stdout) |
|
logger.addHandler(stream_handler) |
|
|
|
|
|
class Unconditional(ExamplesTestsAccelerate): |
|
def test_train_unconditional(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/unconditional_image_generation/train_unconditional.py |
|
--dataset_name hf-internal-testing/dummy_image_class_data |
|
--model_config_name_or_path diffusers/ddpm_dummy |
|
--resolution 64 |
|
--output_dir {tmpdir} |
|
--train_batch_size 2 |
|
--num_epochs 1 |
|
--gradient_accumulation_steps 1 |
|
--ddpm_num_inference_steps 2 |
|
--learning_rate 1e-3 |
|
--lr_warmup_steps 5 |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args, return_stdout=True) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) |
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) |
|
|
|
def test_unconditional_checkpointing_checkpoints_total_limit(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
initial_run_args = f""" |
|
examples/unconditional_image_generation/train_unconditional.py |
|
--dataset_name hf-internal-testing/dummy_image_class_data |
|
--model_config_name_or_path diffusers/ddpm_dummy |
|
--resolution 64 |
|
--output_dir {tmpdir} |
|
--train_batch_size 1 |
|
--num_epochs 1 |
|
--gradient_accumulation_steps 1 |
|
--ddpm_num_inference_steps 2 |
|
--learning_rate 1e-3 |
|
--lr_warmup_steps 5 |
|
--checkpointing_steps=2 |
|
--checkpoints_total_limit=2 |
|
""".split() |
|
|
|
run_command(self._launch_args + initial_run_args) |
|
|
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
|
|
{"checkpoint-4", "checkpoint-6"}, |
|
) |
|
|
|
def test_unconditional_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
initial_run_args = f""" |
|
examples/unconditional_image_generation/train_unconditional.py |
|
--dataset_name hf-internal-testing/dummy_image_class_data |
|
--model_config_name_or_path diffusers/ddpm_dummy |
|
--resolution 64 |
|
--output_dir {tmpdir} |
|
--train_batch_size 1 |
|
--num_epochs 1 |
|
--gradient_accumulation_steps 1 |
|
--ddpm_num_inference_steps 1 |
|
--learning_rate 1e-3 |
|
--lr_warmup_steps 5 |
|
--checkpointing_steps=2 |
|
""".split() |
|
|
|
run_command(self._launch_args + initial_run_args) |
|
|
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-2", "checkpoint-4", "checkpoint-6"}, |
|
) |
|
|
|
resume_run_args = f""" |
|
examples/unconditional_image_generation/train_unconditional.py |
|
--dataset_name hf-internal-testing/dummy_image_class_data |
|
--model_config_name_or_path diffusers/ddpm_dummy |
|
--resolution 64 |
|
--output_dir {tmpdir} |
|
--train_batch_size 1 |
|
--num_epochs 2 |
|
--gradient_accumulation_steps 1 |
|
--ddpm_num_inference_steps 1 |
|
--learning_rate 1e-3 |
|
--lr_warmup_steps 5 |
|
--resume_from_checkpoint=checkpoint-6 |
|
--checkpointing_steps=2 |
|
--checkpoints_total_limit=2 |
|
""".split() |
|
|
|
run_command(self._launch_args + resume_run_args) |
|
|
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-10", "checkpoint-12"}, |
|
) |
|
|