|
import tqdm |
|
|
|
|
|
class LearnScheduleIterator: |
|
def __init__(self, learn_rate, max_steps, cur_step=0): |
|
""" |
|
specify learn_rate as "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000 |
|
""" |
|
|
|
pairs = learn_rate.split(',') |
|
self.rates = [] |
|
self.it = 0 |
|
self.maxit = 0 |
|
try: |
|
for pair in pairs: |
|
if not pair.strip(): |
|
continue |
|
tmp = pair.split(':') |
|
if len(tmp) == 2: |
|
step = int(tmp[1]) |
|
if step > cur_step: |
|
self.rates.append((float(tmp[0]), min(step, max_steps))) |
|
self.maxit += 1 |
|
if step > max_steps: |
|
return |
|
elif step == -1: |
|
self.rates.append((float(tmp[0]), max_steps)) |
|
self.maxit += 1 |
|
return |
|
else: |
|
self.rates.append((float(tmp[0]), max_steps)) |
|
self.maxit += 1 |
|
return |
|
assert self.rates |
|
except (ValueError, AssertionError) as e: |
|
raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.') from e |
|
|
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
if self.it < self.maxit: |
|
self.it += 1 |
|
return self.rates[self.it - 1] |
|
else: |
|
raise StopIteration |
|
|
|
|
|
class LearnRateScheduler: |
|
def __init__(self, learn_rate, max_steps, cur_step=0, verbose=True): |
|
self.schedules = LearnScheduleIterator(learn_rate, max_steps, cur_step) |
|
(self.learn_rate, self.end_step) = next(self.schedules) |
|
self.verbose = verbose |
|
|
|
if self.verbose: |
|
print(f'Training at rate of {self.learn_rate} until step {self.end_step}') |
|
|
|
self.finished = False |
|
|
|
def step(self, step_number): |
|
if step_number < self.end_step: |
|
return False |
|
|
|
try: |
|
(self.learn_rate, self.end_step) = next(self.schedules) |
|
except StopIteration: |
|
self.finished = True |
|
return False |
|
return True |
|
|
|
def apply(self, optimizer, step_number): |
|
if not self.step(step_number): |
|
return |
|
|
|
if self.verbose: |
|
tqdm.tqdm.write(f'Training at rate of {self.learn_rate} until step {self.end_step}') |
|
|
|
for pg in optimizer.param_groups: |
|
pg['lr'] = self.learn_rate |
|
|
|
|