|
import cv2 |
|
import requests |
|
import os |
|
import numpy as np |
|
from PIL import ImageDraw |
|
|
|
GREEN = "#0F0" |
|
BLUE = "#00F" |
|
RED = "#F00" |
|
|
|
|
|
def crop_image(im, settings): |
|
""" Intelligently crop an image to the subject matter """ |
|
|
|
scale_by = 1 |
|
if is_landscape(im.width, im.height): |
|
scale_by = settings.crop_height / im.height |
|
elif is_portrait(im.width, im.height): |
|
scale_by = settings.crop_width / im.width |
|
elif is_square(im.width, im.height): |
|
if is_square(settings.crop_width, settings.crop_height): |
|
scale_by = settings.crop_width / im.width |
|
elif is_landscape(settings.crop_width, settings.crop_height): |
|
scale_by = settings.crop_width / im.width |
|
elif is_portrait(settings.crop_width, settings.crop_height): |
|
scale_by = settings.crop_height / im.height |
|
|
|
|
|
im = im.resize((int(im.width * scale_by), int(im.height * scale_by))) |
|
im_debug = im.copy() |
|
|
|
focus = focal_point(im_debug, settings) |
|
|
|
|
|
|
|
y_half = int(settings.crop_height / 2) |
|
x_half = int(settings.crop_width / 2) |
|
|
|
x1 = focus.x - x_half |
|
if x1 < 0: |
|
x1 = 0 |
|
elif x1 + settings.crop_width > im.width: |
|
x1 = im.width - settings.crop_width |
|
|
|
y1 = focus.y - y_half |
|
if y1 < 0: |
|
y1 = 0 |
|
elif y1 + settings.crop_height > im.height: |
|
y1 = im.height - settings.crop_height |
|
|
|
x2 = x1 + settings.crop_width |
|
y2 = y1 + settings.crop_height |
|
|
|
crop = [x1, y1, x2, y2] |
|
|
|
results = [] |
|
|
|
results.append(im.crop(tuple(crop))) |
|
|
|
if settings.annotate_image: |
|
d = ImageDraw.Draw(im_debug) |
|
rect = list(crop) |
|
rect[2] -= 1 |
|
rect[3] -= 1 |
|
d.rectangle(rect, outline=GREEN) |
|
results.append(im_debug) |
|
if settings.destop_view_image: |
|
im_debug.show() |
|
|
|
return results |
|
|
|
def focal_point(im, settings): |
|
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else [] |
|
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else [] |
|
face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else [] |
|
|
|
pois = [] |
|
|
|
weight_pref_total = 0 |
|
if corner_points: |
|
weight_pref_total += settings.corner_points_weight |
|
if entropy_points: |
|
weight_pref_total += settings.entropy_points_weight |
|
if face_points: |
|
weight_pref_total += settings.face_points_weight |
|
|
|
corner_centroid = None |
|
if corner_points: |
|
corner_centroid = centroid(corner_points) |
|
corner_centroid.weight = settings.corner_points_weight / weight_pref_total |
|
pois.append(corner_centroid) |
|
|
|
entropy_centroid = None |
|
if entropy_points: |
|
entropy_centroid = centroid(entropy_points) |
|
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total |
|
pois.append(entropy_centroid) |
|
|
|
face_centroid = None |
|
if face_points: |
|
face_centroid = centroid(face_points) |
|
face_centroid.weight = settings.face_points_weight / weight_pref_total |
|
pois.append(face_centroid) |
|
|
|
average_point = poi_average(pois, settings) |
|
|
|
if settings.annotate_image: |
|
d = ImageDraw.Draw(im) |
|
max_size = min(im.width, im.height) * 0.07 |
|
if corner_centroid is not None: |
|
color = BLUE |
|
box = corner_centroid.bounding(max_size * corner_centroid.weight) |
|
d.text((box[0], box[1]-15), f"Edge: {corner_centroid.weight:.02f}", fill=color) |
|
d.ellipse(box, outline=color) |
|
if len(corner_points) > 1: |
|
for f in corner_points: |
|
d.rectangle(f.bounding(4), outline=color) |
|
if entropy_centroid is not None: |
|
color = "#ff0" |
|
box = entropy_centroid.bounding(max_size * entropy_centroid.weight) |
|
d.text((box[0], box[1]-15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color) |
|
d.ellipse(box, outline=color) |
|
if len(entropy_points) > 1: |
|
for f in entropy_points: |
|
d.rectangle(f.bounding(4), outline=color) |
|
if face_centroid is not None: |
|
color = RED |
|
box = face_centroid.bounding(max_size * face_centroid.weight) |
|
d.text((box[0], box[1]-15), f"Face: {face_centroid.weight:.02f}", fill=color) |
|
d.ellipse(box, outline=color) |
|
if len(face_points) > 1: |
|
for f in face_points: |
|
d.rectangle(f.bounding(4), outline=color) |
|
|
|
d.ellipse(average_point.bounding(max_size), outline=GREEN) |
|
|
|
return average_point |
|
|
|
|
|
def image_face_points(im, settings): |
|
if settings.dnn_model_path is not None: |
|
detector = cv2.FaceDetectorYN.create( |
|
settings.dnn_model_path, |
|
"", |
|
(im.width, im.height), |
|
0.9, |
|
0.3, |
|
5000 |
|
) |
|
faces = detector.detect(np.array(im)) |
|
results = [] |
|
if faces[1] is not None: |
|
for face in faces[1]: |
|
x = face[0] |
|
y = face[1] |
|
w = face[2] |
|
h = face[3] |
|
results.append( |
|
PointOfInterest( |
|
int(x + (w * 0.5)), |
|
int(y + (h * 0.33)), |
|
size = w, |
|
weight = 1/len(faces[1]) |
|
) |
|
) |
|
return results |
|
else: |
|
np_im = np.array(im) |
|
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) |
|
|
|
tries = [ |
|
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ] |
|
] |
|
for t in tries: |
|
classifier = cv2.CascadeClassifier(t[0]) |
|
minsize = int(min(im.width, im.height) * t[1]) |
|
try: |
|
faces = classifier.detectMultiScale(gray, scaleFactor=1.1, |
|
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) |
|
except Exception: |
|
continue |
|
|
|
if faces: |
|
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] |
|
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects] |
|
return [] |
|
|
|
|
|
def image_corner_points(im, settings): |
|
grayscale = im.convert("L") |
|
|
|
|
|
gd = ImageDraw.Draw(grayscale) |
|
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") |
|
|
|
np_im = np.array(grayscale) |
|
|
|
points = cv2.goodFeaturesToTrack( |
|
np_im, |
|
maxCorners=100, |
|
qualityLevel=0.04, |
|
minDistance=min(grayscale.width, grayscale.height)*0.06, |
|
useHarrisDetector=False, |
|
) |
|
|
|
if points is None: |
|
return [] |
|
|
|
focal_points = [] |
|
for point in points: |
|
x, y = point.ravel() |
|
focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points))) |
|
|
|
return focal_points |
|
|
|
|
|
def image_entropy_points(im, settings): |
|
landscape = im.height < im.width |
|
portrait = im.height > im.width |
|
if landscape: |
|
move_idx = [0, 2] |
|
move_max = im.size[0] |
|
elif portrait: |
|
move_idx = [1, 3] |
|
move_max = im.size[1] |
|
else: |
|
return [] |
|
|
|
e_max = 0 |
|
crop_current = [0, 0, settings.crop_width, settings.crop_height] |
|
crop_best = crop_current |
|
while crop_current[move_idx[1]] < move_max: |
|
crop = im.crop(tuple(crop_current)) |
|
e = image_entropy(crop) |
|
|
|
if (e > e_max): |
|
e_max = e |
|
crop_best = list(crop_current) |
|
|
|
crop_current[move_idx[0]] += 4 |
|
crop_current[move_idx[1]] += 4 |
|
|
|
x_mid = int(crop_best[0] + settings.crop_width/2) |
|
y_mid = int(crop_best[1] + settings.crop_height/2) |
|
|
|
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)] |
|
|
|
|
|
def image_entropy(im): |
|
|
|
|
|
band = np.asarray(im.convert("1"), dtype=np.uint8) |
|
hist, _ = np.histogram(band, bins=range(0, 256)) |
|
hist = hist[hist > 0] |
|
return -np.log2(hist / hist.sum()).sum() |
|
|
|
|
|
def centroid(pois): |
|
x = [poi.x for poi in pois] |
|
y = [poi.y for poi in pois] |
|
return PointOfInterest(sum(x) / len(pois), sum(y) / len(pois)) |
|
|
|
|
|
def poi_average(pois, settings): |
|
weight = 0.0 |
|
x = 0.0 |
|
y = 0.0 |
|
for poi in pois: |
|
weight += poi.weight |
|
x += poi.x * poi.weight |
|
y += poi.y * poi.weight |
|
avg_x = round(weight and x / weight) |
|
avg_y = round(weight and y / weight) |
|
|
|
return PointOfInterest(avg_x, avg_y) |
|
|
|
|
|
def is_landscape(w, h): |
|
return w > h |
|
|
|
|
|
def is_portrait(w, h): |
|
return h > w |
|
|
|
|
|
def is_square(w, h): |
|
return w == h |
|
|
|
|
|
def download_and_cache_models(dirname): |
|
download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true' |
|
model_file_name = 'face_detection_yunet.onnx' |
|
|
|
os.makedirs(dirname, exist_ok=True) |
|
|
|
cache_file = os.path.join(dirname, model_file_name) |
|
if not os.path.exists(cache_file): |
|
print(f"downloading face detection model from '{download_url}' to '{cache_file}'") |
|
response = requests.get(download_url) |
|
with open(cache_file, "wb") as f: |
|
f.write(response.content) |
|
|
|
if os.path.exists(cache_file): |
|
return cache_file |
|
return None |
|
|
|
|
|
class PointOfInterest: |
|
def __init__(self, x, y, weight=1.0, size=10): |
|
self.x = x |
|
self.y = y |
|
self.weight = weight |
|
self.size = size |
|
|
|
def bounding(self, size): |
|
return [ |
|
self.x - size // 2, |
|
self.y - size // 2, |
|
self.x + size // 2, |
|
self.y + size // 2 |
|
] |
|
|
|
|
|
class Settings: |
|
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False, dnn_model_path=None): |
|
self.crop_width = crop_width |
|
self.crop_height = crop_height |
|
self.corner_points_weight = corner_points_weight |
|
self.entropy_points_weight = entropy_points_weight |
|
self.face_points_weight = face_points_weight |
|
self.annotate_image = annotate_image |
|
self.destop_view_image = False |
|
self.dnn_model_path = dnn_model_path |
|
|