|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Post-processing utilities for question answering. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import collections | 
					
						
						|  | import json | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | from typing import Optional, Tuple | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | from tqdm.auto import tqdm | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def postprocess_qa_predictions( | 
					
						
						|  | examples, | 
					
						
						|  | features, | 
					
						
						|  | predictions: Tuple[np.ndarray, np.ndarray], | 
					
						
						|  | version_2_with_negative: bool = False, | 
					
						
						|  | n_best_size: int = 20, | 
					
						
						|  | max_answer_length: int = 30, | 
					
						
						|  | null_score_diff_threshold: float = 0.0, | 
					
						
						|  | output_dir: Optional[str] = None, | 
					
						
						|  | prefix: Optional[str] = None, | 
					
						
						|  | log_level: Optional[int] = logging.WARNING, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Post-processes the predictions of a question-answering model to convert them to answers that are substrings of the | 
					
						
						|  | original contexts. This is the base postprocessing functions for models that only return start and end logits. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | examples: The non-preprocessed dataset (see the main script for more information). | 
					
						
						|  | features: The processed dataset (see the main script for more information). | 
					
						
						|  | predictions (:obj:`Tuple[np.ndarray, np.ndarray]`): | 
					
						
						|  | The predictions of the model: two arrays containing the start logits and the end logits respectively. Its | 
					
						
						|  | first dimension must match the number of elements of :obj:`features`. | 
					
						
						|  | version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`): | 
					
						
						|  | Whether or not the underlying dataset contains examples with no answers. | 
					
						
						|  | n_best_size (:obj:`int`, `optional`, defaults to 20): | 
					
						
						|  | The total number of n-best predictions to generate when looking for an answer. | 
					
						
						|  | max_answer_length (:obj:`int`, `optional`, defaults to 30): | 
					
						
						|  | The maximum length of an answer that can be generated. This is needed because the start and end predictions | 
					
						
						|  | are not conditioned on one another. | 
					
						
						|  | null_score_diff_threshold (:obj:`float`, `optional`, defaults to 0): | 
					
						
						|  | The threshold used to select the null answer: if the best answer has a score that is less than the score of | 
					
						
						|  | the null answer minus this threshold, the null answer is selected for this example (note that the score of | 
					
						
						|  | the null answer for an example giving several features is the minimum of the scores for the null answer on | 
					
						
						|  | each feature: all features must be aligned on the fact they `want` to predict a null answer). | 
					
						
						|  |  | 
					
						
						|  | Only useful when :obj:`version_2_with_negative` is :obj:`True`. | 
					
						
						|  | output_dir (:obj:`str`, `optional`): | 
					
						
						|  | If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if | 
					
						
						|  | :obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null | 
					
						
						|  | answers, are saved in `output_dir`. | 
					
						
						|  | prefix (:obj:`str`, `optional`): | 
					
						
						|  | If provided, the dictionaries mentioned above are saved with `prefix` added to their names. | 
					
						
						|  | log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``): | 
					
						
						|  | ``logging`` log level (e.g., ``logging.WARNING``) | 
					
						
						|  | """ | 
					
						
						|  | if len(predictions) != 2: | 
					
						
						|  | raise ValueError("`predictions` should be a tuple with two elements (start_logits, end_logits).") | 
					
						
						|  | all_start_logits, all_end_logits = predictions | 
					
						
						|  |  | 
					
						
						|  | if len(predictions[0]) != len(features): | 
					
						
						|  | raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | example_id_to_index = {k: i for i, k in enumerate(examples["id"])} | 
					
						
						|  | features_per_example = collections.defaultdict(list) | 
					
						
						|  | for i, feature in enumerate(features): | 
					
						
						|  | features_per_example[example_id_to_index[feature["example_id"]]].append(i) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_predictions = collections.OrderedDict() | 
					
						
						|  | all_nbest_json = collections.OrderedDict() | 
					
						
						|  | if version_2_with_negative: | 
					
						
						|  | scores_diff_json = collections.OrderedDict() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.setLevel(log_level) | 
					
						
						|  | logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for example_index, example in enumerate(tqdm(examples)): | 
					
						
						|  |  | 
					
						
						|  | feature_indices = features_per_example[example_index] | 
					
						
						|  |  | 
					
						
						|  | min_null_prediction = None | 
					
						
						|  | prelim_predictions = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for feature_index in feature_indices: | 
					
						
						|  |  | 
					
						
						|  | start_logits = all_start_logits[feature_index] | 
					
						
						|  | end_logits = all_end_logits[feature_index] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | offset_mapping = features[feature_index]["offset_mapping"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | token_is_max_context = features[feature_index].get("token_is_max_context", None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | feature_null_score = start_logits[0] + end_logits[0] | 
					
						
						|  | if min_null_prediction is None or min_null_prediction["score"] > feature_null_score: | 
					
						
						|  | min_null_prediction = { | 
					
						
						|  | "offsets": (0, 0), | 
					
						
						|  | "score": feature_null_score, | 
					
						
						|  | "start_logit": start_logits[0], | 
					
						
						|  | "end_logit": end_logits[0], | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist() | 
					
						
						|  | end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist() | 
					
						
						|  | for start_index in start_indexes: | 
					
						
						|  | for end_index in end_indexes: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | start_index >= len(offset_mapping) | 
					
						
						|  | or end_index >= len(offset_mapping) | 
					
						
						|  | or offset_mapping[start_index] is None | 
					
						
						|  | or len(offset_mapping[start_index]) < 2 | 
					
						
						|  | or offset_mapping[end_index] is None | 
					
						
						|  | or len(offset_mapping[end_index]) < 2 | 
					
						
						|  | ): | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | if end_index < start_index or end_index - start_index + 1 > max_answer_length: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False): | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | prelim_predictions.append( | 
					
						
						|  | { | 
					
						
						|  | "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]), | 
					
						
						|  | "score": start_logits[start_index] + end_logits[end_index], | 
					
						
						|  | "start_logit": start_logits[start_index], | 
					
						
						|  | "end_logit": end_logits[end_index], | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | if version_2_with_negative and min_null_prediction is not None: | 
					
						
						|  |  | 
					
						
						|  | prelim_predictions.append(min_null_prediction) | 
					
						
						|  | null_score = min_null_prediction["score"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | version_2_with_negative | 
					
						
						|  | and min_null_prediction is not None | 
					
						
						|  | and not any(p["offsets"] == (0, 0) for p in predictions) | 
					
						
						|  | ): | 
					
						
						|  | predictions.append(min_null_prediction) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | context = example["context"] | 
					
						
						|  | for pred in predictions: | 
					
						
						|  | offsets = pred.pop("offsets") | 
					
						
						|  | pred["text"] = context[offsets[0] : offsets[1]] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""): | 
					
						
						|  | predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scores = np.array([pred.pop("score") for pred in predictions]) | 
					
						
						|  | exp_scores = np.exp(scores - np.max(scores)) | 
					
						
						|  | probs = exp_scores / exp_scores.sum() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for prob, pred in zip(probs, predictions): | 
					
						
						|  | pred["probability"] = prob | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not version_2_with_negative: | 
					
						
						|  | all_predictions[example["id"]] = predictions[0]["text"] | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | i = 0 | 
					
						
						|  | while predictions[i]["text"] == "": | 
					
						
						|  | i += 1 | 
					
						
						|  | best_non_null_pred = predictions[i] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"] | 
					
						
						|  | scores_diff_json[example["id"]] = float(score_diff) | 
					
						
						|  | if score_diff > null_score_diff_threshold: | 
					
						
						|  | all_predictions[example["id"]] = "" | 
					
						
						|  | else: | 
					
						
						|  | all_predictions[example["id"]] = best_non_null_pred["text"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_nbest_json[example["id"]] = [ | 
					
						
						|  | {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()} | 
					
						
						|  | for pred in predictions | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_dir is not None: | 
					
						
						|  | if not os.path.isdir(output_dir): | 
					
						
						|  | raise EnvironmentError(f"{output_dir} is not a directory.") | 
					
						
						|  |  | 
					
						
						|  | prediction_file = os.path.join( | 
					
						
						|  | output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json" | 
					
						
						|  | ) | 
					
						
						|  | nbest_file = os.path.join( | 
					
						
						|  | output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json" | 
					
						
						|  | ) | 
					
						
						|  | if version_2_with_negative: | 
					
						
						|  | null_odds_file = os.path.join( | 
					
						
						|  | output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Saving predictions to {prediction_file}.") | 
					
						
						|  | with open(prediction_file, "w") as writer: | 
					
						
						|  | writer.write(json.dumps(all_predictions, indent=4) + "\n") | 
					
						
						|  | logger.info(f"Saving nbest_preds to {nbest_file}.") | 
					
						
						|  | with open(nbest_file, "w") as writer: | 
					
						
						|  | writer.write(json.dumps(all_nbest_json, indent=4) + "\n") | 
					
						
						|  | if version_2_with_negative: | 
					
						
						|  | logger.info(f"Saving null_odds to {null_odds_file}.") | 
					
						
						|  | with open(null_odds_file, "w") as writer: | 
					
						
						|  | writer.write(json.dumps(scores_diff_json, indent=4) + "\n") | 
					
						
						|  |  | 
					
						
						|  | return all_predictions | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def postprocess_qa_predictions_with_beam_search( | 
					
						
						|  | examples, | 
					
						
						|  | features, | 
					
						
						|  | predictions: Tuple[np.ndarray, np.ndarray], | 
					
						
						|  | version_2_with_negative: bool = False, | 
					
						
						|  | n_best_size: int = 20, | 
					
						
						|  | max_answer_length: int = 30, | 
					
						
						|  | start_n_top: int = 5, | 
					
						
						|  | end_n_top: int = 5, | 
					
						
						|  | output_dir: Optional[str] = None, | 
					
						
						|  | prefix: Optional[str] = None, | 
					
						
						|  | log_level: Optional[int] = logging.WARNING, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Post-processes the predictions of a question-answering model with beam search to convert them to answers that are substrings of the | 
					
						
						|  | original contexts. This is the postprocessing functions for models that return start and end logits, indices, as well as | 
					
						
						|  | cls token predictions. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | examples: The non-preprocessed dataset (see the main script for more information). | 
					
						
						|  | features: The processed dataset (see the main script for more information). | 
					
						
						|  | predictions (:obj:`Tuple[np.ndarray, np.ndarray]`): | 
					
						
						|  | The predictions of the model: two arrays containing the start logits and the end logits respectively. Its | 
					
						
						|  | first dimension must match the number of elements of :obj:`features`. | 
					
						
						|  | version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`): | 
					
						
						|  | Whether or not the underlying dataset contains examples with no answers. | 
					
						
						|  | n_best_size (:obj:`int`, `optional`, defaults to 20): | 
					
						
						|  | The total number of n-best predictions to generate when looking for an answer. | 
					
						
						|  | max_answer_length (:obj:`int`, `optional`, defaults to 30): | 
					
						
						|  | The maximum length of an answer that can be generated. This is needed because the start and end predictions | 
					
						
						|  | are not conditioned on one another. | 
					
						
						|  | start_n_top (:obj:`int`, `optional`, defaults to 5): | 
					
						
						|  | The number of top start logits too keep when searching for the :obj:`n_best_size` predictions. | 
					
						
						|  | end_n_top (:obj:`int`, `optional`, defaults to 5): | 
					
						
						|  | The number of top end logits too keep when searching for the :obj:`n_best_size` predictions. | 
					
						
						|  | output_dir (:obj:`str`, `optional`): | 
					
						
						|  | If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if | 
					
						
						|  | :obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null | 
					
						
						|  | answers, are saved in `output_dir`. | 
					
						
						|  | prefix (:obj:`str`, `optional`): | 
					
						
						|  | If provided, the dictionaries mentioned above are saved with `prefix` added to their names. | 
					
						
						|  | log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``): | 
					
						
						|  | ``logging`` log level (e.g., ``logging.WARNING``) | 
					
						
						|  | """ | 
					
						
						|  | if len(predictions) != 5: | 
					
						
						|  | raise ValueError("`predictions` should be a tuple with five elements.") | 
					
						
						|  | start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions | 
					
						
						|  |  | 
					
						
						|  | if len(predictions[0]) != len(features): | 
					
						
						|  | raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | example_id_to_index = {k: i for i, k in enumerate(examples["id"])} | 
					
						
						|  | features_per_example = collections.defaultdict(list) | 
					
						
						|  | for i, feature in enumerate(features): | 
					
						
						|  | features_per_example[example_id_to_index[feature["example_id"]]].append(i) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_predictions = collections.OrderedDict() | 
					
						
						|  | all_nbest_json = collections.OrderedDict() | 
					
						
						|  | scores_diff_json = collections.OrderedDict() if version_2_with_negative else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.setLevel(log_level) | 
					
						
						|  | logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for example_index, example in enumerate(tqdm(examples)): | 
					
						
						|  |  | 
					
						
						|  | feature_indices = features_per_example[example_index] | 
					
						
						|  |  | 
					
						
						|  | min_null_score = None | 
					
						
						|  | prelim_predictions = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for feature_index in feature_indices: | 
					
						
						|  |  | 
					
						
						|  | start_log_prob = start_top_log_probs[feature_index] | 
					
						
						|  | start_indexes = start_top_index[feature_index] | 
					
						
						|  | end_log_prob = end_top_log_probs[feature_index] | 
					
						
						|  | end_indexes = end_top_index[feature_index] | 
					
						
						|  | feature_null_score = cls_logits[feature_index] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | offset_mapping = features[feature_index]["offset_mapping"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | token_is_max_context = features[feature_index].get("token_is_max_context", None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if min_null_score is None or feature_null_score < min_null_score: | 
					
						
						|  | min_null_score = feature_null_score | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i in range(start_n_top): | 
					
						
						|  | for j in range(end_n_top): | 
					
						
						|  | start_index = int(start_indexes[i]) | 
					
						
						|  | j_index = i * end_n_top + j | 
					
						
						|  | end_index = int(end_indexes[j_index]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | start_index >= len(offset_mapping) | 
					
						
						|  | or end_index >= len(offset_mapping) | 
					
						
						|  | or offset_mapping[start_index] is None | 
					
						
						|  | or len(offset_mapping[start_index]) < 2 | 
					
						
						|  | or offset_mapping[end_index] is None | 
					
						
						|  | or len(offset_mapping[end_index]) < 2 | 
					
						
						|  | ): | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if end_index < start_index or end_index - start_index + 1 > max_answer_length: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False): | 
					
						
						|  | continue | 
					
						
						|  | prelim_predictions.append( | 
					
						
						|  | { | 
					
						
						|  | "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]), | 
					
						
						|  | "score": start_log_prob[i] + end_log_prob[j_index], | 
					
						
						|  | "start_log_prob": start_log_prob[i], | 
					
						
						|  | "end_log_prob": end_log_prob[j_index], | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | context = example["context"] | 
					
						
						|  | for pred in predictions: | 
					
						
						|  | offsets = pred.pop("offsets") | 
					
						
						|  | pred["text"] = context[offsets[0] : offsets[1]] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(predictions) == 0: | 
					
						
						|  |  | 
					
						
						|  | min_null_score = -2e-6 | 
					
						
						|  | predictions.insert(0, {"text": "", "start_logit": -1e-6, "end_logit": -1e-6, "score": min_null_score}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scores = np.array([pred.pop("score") for pred in predictions]) | 
					
						
						|  | exp_scores = np.exp(scores - np.max(scores)) | 
					
						
						|  | probs = exp_scores / exp_scores.sum() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for prob, pred in zip(probs, predictions): | 
					
						
						|  | pred["probability"] = prob | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_predictions[example["id"]] = predictions[0]["text"] | 
					
						
						|  | if version_2_with_negative: | 
					
						
						|  | scores_diff_json[example["id"]] = float(min_null_score) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_nbest_json[example["id"]] = [ | 
					
						
						|  | {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()} | 
					
						
						|  | for pred in predictions | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_dir is not None: | 
					
						
						|  | if not os.path.isdir(output_dir): | 
					
						
						|  | raise EnvironmentError(f"{output_dir} is not a directory.") | 
					
						
						|  |  | 
					
						
						|  | prediction_file = os.path.join( | 
					
						
						|  | output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json" | 
					
						
						|  | ) | 
					
						
						|  | nbest_file = os.path.join( | 
					
						
						|  | output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json" | 
					
						
						|  | ) | 
					
						
						|  | if version_2_with_negative: | 
					
						
						|  | null_odds_file = os.path.join( | 
					
						
						|  | output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Saving predictions to {prediction_file}.") | 
					
						
						|  | with open(prediction_file, "w") as writer: | 
					
						
						|  | writer.write(json.dumps(all_predictions, indent=4) + "\n") | 
					
						
						|  | logger.info(f"Saving nbest_preds to {nbest_file}.") | 
					
						
						|  | with open(nbest_file, "w") as writer: | 
					
						
						|  | writer.write(json.dumps(all_nbest_json, indent=4) + "\n") | 
					
						
						|  | if version_2_with_negative: | 
					
						
						|  | logger.info(f"Saving null_odds to {null_odds_file}.") | 
					
						
						|  | with open(null_odds_file, "w") as writer: | 
					
						
						|  | writer.write(json.dumps(scores_diff_json, indent=4) + "\n") | 
					
						
						|  |  | 
					
						
						|  | return all_predictions, scores_diff_json | 
					
						
						|  |  |