chemistry
AI4Industry commited on
Commit
c1b9a7b
·
verified ·
1 Parent(s): 706490c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -4
README.md CHANGED
@@ -8,15 +8,17 @@ From paper: "*MolParser: End-to-end Visual Recognition of Molecule Structures in
8
 
9
  We provide several [ultralytics YOLO11]((https://github.com/ultralytics/ultralytics)) weights for molecule detection with different size & input resolution.
10
 
11
- ## general molecule detection
12
 
13
  `moldet_yolo11[size]_640_general.pt`
14
 
 
 
15
  * 640x640 input resolution
16
  * support handwritten molecules
17
  * multiscale input (inputs can be single/multiple molecular cutouts, reaction or table cutouts, or single-page PDF images)
18
 
19
- <span style='color:gray'>For single-molecule input (used as a classification model), appropriate padding can be added to enhance the performance.</span>
20
 
21
  Result in private testing:
22
  | size | map50 | map50-95 |
@@ -33,13 +35,18 @@ model = YOLO("moldet_yolo11l_640_general.pt")
33
  model.predict("path/to/image.png", save=True, imgsz=640, conf=0.5)
34
  ```
35
 
36
- ## PDF molecule detection
37
 
38
  `moldet_yolo11[size]_960_doc.pt`
39
 
 
 
40
  * 960x960 input resolution
41
  * single page PDF image input
42
 
 
 
 
43
  Result in private testing:
44
  | size | map50 | map50-95 |
45
  | ---- | ----- | -------- |
@@ -52,4 +59,5 @@ usage:
52
  ```python
53
  from ultralytics import YOLO
54
  model = YOLO("moldet_yolo11l_960_doc.pt")
55
- model.predict("path/to/pdf_page_image.png", save=True, imgsz=960, conf=0.5)
 
 
8
 
9
  We provide several [ultralytics YOLO11]((https://github.com/ultralytics/ultralytics)) weights for molecule detection with different size & input resolution.
10
 
11
+ ## general molecule structure detection models
12
 
13
  `moldet_yolo11[size]_640_general.pt`
14
 
15
+ YOLO11 weights trained on 35k human annotated image crops and 100k generated images
16
+
17
  * 640x640 input resolution
18
  * support handwritten molecules
19
  * multiscale input (inputs can be single/multiple molecular cutouts, reaction or table cutouts, or single-page PDF images)
20
 
21
+ <span style='color:gray'>Warning: For single-molecule input (used as a classification model), appropriate padding can be added to enhance the performance.</span>
22
 
23
  Result in private testing:
24
  | size | map50 | map50-95 |
 
35
  model.predict("path/to/image.png", save=True, imgsz=640, conf=0.5)
36
  ```
37
 
38
+ ## PDF molecule structure detection models
39
 
40
  `moldet_yolo11[size]_960_doc.pt`
41
 
42
+ YOLO11 weights trained on 26k human annotated PDF pages (patents, papers, and books)
43
+
44
  * 960x960 input resolution
45
  * single page PDF image input
46
 
47
+ <span style='color:gray'>Warning: It is recommended to use MuPDF to render PDF pages at more than 144dpi.</span>
48
+
49
+
50
  Result in private testing:
51
  | size | map50 | map50-95 |
52
  | ---- | ----- | -------- |
 
59
  ```python
60
  from ultralytics import YOLO
61
  model = YOLO("moldet_yolo11l_960_doc.pt")
62
+ model.predict("path/to/pdf_page_image.png", save=True, imgsz=960, conf=0.5)
63
+ ```