Translation
RicardoRei commited on
Commit
e2f7998
·
1 Parent(s): d4918ff

UniTE MUP checkpoint

Browse files
Files changed (3) hide show
  1. README.md +163 -0
  2. checkpoints/model.ckpt +3 -0
  3. hparams.yaml +30 -0
README.md CHANGED
@@ -1,3 +1,166 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: translation
3
+ language:
4
+ - multilingual
5
+ - af
6
+ - am
7
+ - ar
8
+ - as
9
+ - az
10
+ - be
11
+ - bg
12
+ - bn
13
+ - br
14
+ - bs
15
+ - ca
16
+ - cs
17
+ - cy
18
+ - da
19
+ - de
20
+ - el
21
+ - en
22
+ - eo
23
+ - es
24
+ - et
25
+ - eu
26
+ - fa
27
+ - fi
28
+ - fr
29
+ - fy
30
+ - ga
31
+ - gd
32
+ - gl
33
+ - gu
34
+ - ha
35
+ - he
36
+ - hi
37
+ - hr
38
+ - hu
39
+ - hy
40
+ - id
41
+ - is
42
+ - it
43
+ - ja
44
+ - jv
45
+ - ka
46
+ - kk
47
+ - km
48
+ - kn
49
+ - ko
50
+ - ku
51
+ - ky
52
+ - la
53
+ - lo
54
+ - lt
55
+ - lv
56
+ - mg
57
+ - mk
58
+ - ml
59
+ - mn
60
+ - mr
61
+ - ms
62
+ - my
63
+ - ne
64
+ - nl
65
+ - 'no'
66
+ - om
67
+ - or
68
+ - pa
69
+ - pl
70
+ - ps
71
+ - pt
72
+ - ro
73
+ - ru
74
+ - sa
75
+ - sd
76
+ - si
77
+ - sk
78
+ - sl
79
+ - so
80
+ - sq
81
+ - sr
82
+ - su
83
+ - sv
84
+ - sw
85
+ - ta
86
+ - te
87
+ - th
88
+ - tl
89
+ - tr
90
+ - ug
91
+ - uk
92
+ - ur
93
+ - uz
94
+ - vi
95
+ - xh
96
+ - yi
97
+ - zh
98
+
99
  license: apache-2.0
100
  ---
101
+
102
+ This model was developed by the NLP2CT Lab at the University of Macau and Alibaba Group, and all credits should be attributed to these groups. Since it was developed using the COMET codebase, we adapted the code to run these models within COMET."
103
+
104
+ # Paper
105
+
106
+ - [UniTE: Unified Translation Evaluation](https://aclanthology.org/2022.acl-long.558/) (Wan et al., ACL 2022)
107
+
108
+ # Original Code
109
+
110
+ - [UniTE](https://github.com/NLP2CT/UniTE)
111
+
112
+ # License
113
+
114
+ Apache 2.0
115
+
116
+ # Usage (unbabel-comet)
117
+
118
+ Using this model requires unbabel-comet to be installed:
119
+
120
+ ```bash
121
+ pip install --upgrade pip # ensures that pip is current
122
+ pip install unbabel-comet
123
+ ```
124
+
125
+ Then you can use it through comet CLI:
126
+
127
+ ```bash
128
+ comet-score -s {source-inputs}.txt -t {translation-outputs}.txt -r {references}.txt --model Unbabel/unite-mup
129
+ ```
130
+
131
+ Or using Python:
132
+
133
+ ```python
134
+ from comet import download_model, load_from_checkpoint
135
+
136
+ model_path = download_model("Unbabel/unite-mup")
137
+ model = load_from_checkpoint(model_path)
138
+ data = [
139
+ {
140
+ "src": "Dem Feuer konnte Einhalt geboten werden",
141
+ "mt": "The fire could be stopped",
142
+ "ref": "They were able to control the fire."
143
+ },
144
+ {
145
+ "src": "Schulen und Kindergärten wurden eröffnet.",
146
+ "mt": "Schools and kindergartens were open",
147
+ "ref": "Schools and kindergartens opened"
148
+ }
149
+ ]
150
+ model_output = model.predict(data, batch_size=8, gpus=1)
151
+ print (model_output)
152
+ ```
153
+
154
+ # Intended uses
155
+
156
+ Our model is intented to be used for **MT evaluation**.
157
+
158
+ Given a a triplet with (source sentence, translation, reference translation) outputs a single score between 0 and 1 where 1 represents a perfect translation.
159
+
160
+ # Languages Covered:
161
+
162
+ This model builds on top of XLM-R which cover the following languages:
163
+
164
+ Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish.
165
+
166
+ Thus, results for language pairs containing uncovered languages are unreliable!
checkpoints/model.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:009d25e6e8b3317bef1bbab5185881d2eb84ba9e98abf8f8f0509bc3f3b2aae5
3
+ size 2260734321
hparams.yaml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ activations: Tanh
2
+ batch_size: 4
3
+ class_identifier: unified_metric
4
+ dropout: 0.1
5
+ encoder_learning_rate: 5.0e-06
6
+ encoder_model: XLM-RoBERTa
7
+ final_activation: null
8
+ hidden_sizes:
9
+ - 3072
10
+ - 1024
11
+ input_segments:
12
+ - src
13
+ - mt
14
+ - ref
15
+ keep_embeddings_frozen: true
16
+ layer: mix
17
+ layerwise_decay: 0.95
18
+ learning_rate: 1.5e-05
19
+ load_weights_from_checkpoint: null
20
+ nr_frozen_epochs: 0.3
21
+ optimizer: AdamW
22
+ pool: cls
23
+ pretrained_model: xlm-roberta-large
24
+ train_data: data/1719-da.csv
25
+ validation_data:
26
+ - data/qad-ende-newstest2020.csv
27
+ - data/qad-enru-newstest2020.csv
28
+ - data/wmt-ende-newstest2021.csv
29
+ - data/wmt-zhen-newstest2021.csv
30
+ - data/wmt-enru-newstest2021.csv