Upload folder using huggingface_hub
Browse files- added_tokens.json +4 -0
- config.json +28 -0
- generation_config.json +7 -0
- latest +1 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +298 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +58 -0
- trainer_state.json +3955 -0
- training_args.bin +3 -0
- zero_to_fp32.py +592 -0
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|im_end|>": 32000,
|
3 |
+
"<|im_start|>": 32001
|
4 |
+
}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Unbabel/TowerBase-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 32000,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 4096,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 11008,
|
14 |
+
"max_position_embeddings": 4096,
|
15 |
+
"model_type": "llama",
|
16 |
+
"num_attention_heads": 32,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 32,
|
19 |
+
"pretraining_tp": 1,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 10000.0,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.40.0.dev0",
|
26 |
+
"use_cache": false,
|
27 |
+
"vocab_size": 32002
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.40.0.dev0"
|
7 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step5624
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:419140c230c3066b065684f79909a8973c2f663616dae18206cec205f21e8942
|
3 |
+
size 4939001736
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aec1f182a8cab4287640bb45035987839589c066c68af85ab091d1b2f12dd254
|
3 |
+
size 4947390880
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8aba4188a43b9e11083bd4c27091ce9899a46c8b4729ec483913252b6e64e9b3
|
3 |
+
size 3590505200
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 13476864000
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f2439da621f14c22b4f733e91bfc9de6b506d28d7b8d6f3eaca2e0b4f24c078
|
3 |
+
size 15024
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9e3fb386557f376b8946af5b8c91f9418f374dddb2ad9da4868b1ef16778c32
|
3 |
+
size 15024
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc7774d06045635bece9e960378fdc6913bf7bbbc903444cc570d1ca6ac25645
|
3 |
+
size 15024
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d98c54a80a914fecf43d06ea81432499f46e70664f1d04651bf339163e30fa9e
|
3 |
+
size 15024
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cda74cda78125cfad5a2d4b09c5a8c8327b1a8d68aa04ba8799fe223d26bcee8
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|im_end|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<|im_end|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"32001": {
|
38 |
+
"content": "<|im_start|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": false
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"bos_token": "<s>",
|
47 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
48 |
+
"clean_up_tokenization_spaces": false,
|
49 |
+
"eos_token": "<|im_end|>",
|
50 |
+
"legacy": false,
|
51 |
+
"model_max_length": 1000000000000000019884624838656,
|
52 |
+
"pad_token": "</s>",
|
53 |
+
"padding_side": "right",
|
54 |
+
"sp_model_kwargs": {},
|
55 |
+
"tokenizer_class": "LlamaTokenizer",
|
56 |
+
"unk_token": "<unk>",
|
57 |
+
"use_default_system_prompt": false
|
58 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3955 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.9420444444444445,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 5624,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"grad_norm": 9.912928587976149,
|
14 |
+
"learning_rate": 1.4e-07,
|
15 |
+
"loss": 1.0098,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.01,
|
20 |
+
"grad_norm": 9.065321089366511,
|
21 |
+
"learning_rate": 2.8e-07,
|
22 |
+
"loss": 1.0032,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.02,
|
27 |
+
"grad_norm": 4.529282680442283,
|
28 |
+
"learning_rate": 4.2e-07,
|
29 |
+
"loss": 0.9767,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.03,
|
34 |
+
"grad_norm": 4.079773534866118,
|
35 |
+
"learning_rate": 5.6e-07,
|
36 |
+
"loss": 0.9341,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.04,
|
41 |
+
"grad_norm": 1.7504240808921168,
|
42 |
+
"learning_rate": 7.000000000000001e-07,
|
43 |
+
"loss": 0.8727,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.04,
|
48 |
+
"grad_norm": 0.7446189301316752,
|
49 |
+
"learning_rate": 8.4e-07,
|
50 |
+
"loss": 0.7997,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.05,
|
55 |
+
"grad_norm": 0.5893489037586176,
|
56 |
+
"learning_rate": 9.800000000000001e-07,
|
57 |
+
"loss": 0.7828,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.06,
|
62 |
+
"grad_norm": 0.5798012459841311,
|
63 |
+
"learning_rate": 1.12e-06,
|
64 |
+
"loss": 0.7671,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.06,
|
69 |
+
"grad_norm": 0.5143143417454488,
|
70 |
+
"learning_rate": 1.26e-06,
|
71 |
+
"loss": 0.777,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.07,
|
76 |
+
"grad_norm": 0.5006881361687121,
|
77 |
+
"learning_rate": 1.4000000000000001e-06,
|
78 |
+
"loss": 0.7709,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.08,
|
83 |
+
"grad_norm": 0.5268772561224019,
|
84 |
+
"learning_rate": 1.54e-06,
|
85 |
+
"loss": 0.7751,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.09,
|
90 |
+
"grad_norm": 0.49059329535011015,
|
91 |
+
"learning_rate": 1.68e-06,
|
92 |
+
"loss": 0.7588,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.09,
|
97 |
+
"grad_norm": 0.548982179156723,
|
98 |
+
"learning_rate": 1.82e-06,
|
99 |
+
"loss": 0.758,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.1,
|
104 |
+
"grad_norm": 0.5118740800557817,
|
105 |
+
"learning_rate": 1.9600000000000003e-06,
|
106 |
+
"loss": 0.7492,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.11,
|
111 |
+
"grad_norm": 0.47988356348194033,
|
112 |
+
"learning_rate": 2.1e-06,
|
113 |
+
"loss": 0.7479,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.11,
|
118 |
+
"grad_norm": 0.5324095582498372,
|
119 |
+
"learning_rate": 2.24e-06,
|
120 |
+
"loss": 0.7344,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.12,
|
125 |
+
"grad_norm": 0.49578185528674784,
|
126 |
+
"learning_rate": 2.38e-06,
|
127 |
+
"loss": 0.7379,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.13,
|
132 |
+
"grad_norm": 0.4751722809020323,
|
133 |
+
"learning_rate": 2.52e-06,
|
134 |
+
"loss": 0.7515,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.14,
|
139 |
+
"grad_norm": 0.4898512842949614,
|
140 |
+
"learning_rate": 2.66e-06,
|
141 |
+
"loss": 0.7428,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.14,
|
146 |
+
"grad_norm": 0.4938014103724035,
|
147 |
+
"learning_rate": 2.8000000000000003e-06,
|
148 |
+
"loss": 0.7356,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.15,
|
153 |
+
"grad_norm": 0.4853179196888149,
|
154 |
+
"learning_rate": 2.94e-06,
|
155 |
+
"loss": 0.7338,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.16,
|
160 |
+
"grad_norm": 0.5006261354893382,
|
161 |
+
"learning_rate": 3.08e-06,
|
162 |
+
"loss": 0.7228,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.16,
|
167 |
+
"grad_norm": 0.49494536099466524,
|
168 |
+
"learning_rate": 3.22e-06,
|
169 |
+
"loss": 0.7371,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.17,
|
174 |
+
"grad_norm": 0.4745560090617258,
|
175 |
+
"learning_rate": 3.36e-06,
|
176 |
+
"loss": 0.7374,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.18,
|
181 |
+
"grad_norm": 0.458424659300056,
|
182 |
+
"learning_rate": 3.5e-06,
|
183 |
+
"loss": 0.7284,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.18,
|
188 |
+
"grad_norm": 0.4918105642778609,
|
189 |
+
"learning_rate": 3.64e-06,
|
190 |
+
"loss": 0.719,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.19,
|
195 |
+
"grad_norm": 0.45994092727545755,
|
196 |
+
"learning_rate": 3.7800000000000002e-06,
|
197 |
+
"loss": 0.7328,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.2,
|
202 |
+
"grad_norm": 0.4888877840053054,
|
203 |
+
"learning_rate": 3.920000000000001e-06,
|
204 |
+
"loss": 0.7257,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.21,
|
209 |
+
"grad_norm": 0.4891132357037931,
|
210 |
+
"learning_rate": 4.059999999999999e-06,
|
211 |
+
"loss": 0.7146,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.21,
|
216 |
+
"grad_norm": 0.4659780107286472,
|
217 |
+
"learning_rate": 4.2e-06,
|
218 |
+
"loss": 0.7207,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.22,
|
223 |
+
"grad_norm": 0.4747662452681582,
|
224 |
+
"learning_rate": 4.34e-06,
|
225 |
+
"loss": 0.7196,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.23,
|
230 |
+
"grad_norm": 0.46183058951309874,
|
231 |
+
"learning_rate": 4.48e-06,
|
232 |
+
"loss": 0.7166,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.23,
|
237 |
+
"grad_norm": 0.47556837186042844,
|
238 |
+
"learning_rate": 4.62e-06,
|
239 |
+
"loss": 0.7138,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.24,
|
244 |
+
"grad_norm": 0.4646419935884572,
|
245 |
+
"learning_rate": 4.76e-06,
|
246 |
+
"loss": 0.7166,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.25,
|
251 |
+
"grad_norm": 0.47208612393069765,
|
252 |
+
"learning_rate": 4.9e-06,
|
253 |
+
"loss": 0.7071,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.26,
|
258 |
+
"grad_norm": 0.47395551626034477,
|
259 |
+
"learning_rate": 5.04e-06,
|
260 |
+
"loss": 0.7081,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.26,
|
265 |
+
"grad_norm": 0.46256038389399284,
|
266 |
+
"learning_rate": 5.1799999999999995e-06,
|
267 |
+
"loss": 0.7112,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.27,
|
272 |
+
"grad_norm": 0.44989559880311664,
|
273 |
+
"learning_rate": 5.32e-06,
|
274 |
+
"loss": 0.7157,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.28,
|
279 |
+
"grad_norm": 0.4759980664139243,
|
280 |
+
"learning_rate": 5.46e-06,
|
281 |
+
"loss": 0.716,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.28,
|
286 |
+
"grad_norm": 0.47761427911509746,
|
287 |
+
"learning_rate": 5.600000000000001e-06,
|
288 |
+
"loss": 0.6936,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.29,
|
293 |
+
"grad_norm": 0.4823631066912239,
|
294 |
+
"learning_rate": 5.739999999999999e-06,
|
295 |
+
"loss": 0.7096,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.3,
|
300 |
+
"grad_norm": 0.4692563644972781,
|
301 |
+
"learning_rate": 5.88e-06,
|
302 |
+
"loss": 0.6955,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.31,
|
307 |
+
"grad_norm": 0.4758216043542266,
|
308 |
+
"learning_rate": 6.02e-06,
|
309 |
+
"loss": 0.7046,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.31,
|
314 |
+
"grad_norm": 0.4607724176991764,
|
315 |
+
"learning_rate": 6.16e-06,
|
316 |
+
"loss": 0.7071,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.32,
|
321 |
+
"grad_norm": 0.47650098464440593,
|
322 |
+
"learning_rate": 6.3e-06,
|
323 |
+
"loss": 0.6948,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.33,
|
328 |
+
"grad_norm": 0.4927763843500283,
|
329 |
+
"learning_rate": 6.44e-06,
|
330 |
+
"loss": 0.7138,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.33,
|
335 |
+
"grad_norm": 0.44343044028786904,
|
336 |
+
"learning_rate": 6.58e-06,
|
337 |
+
"loss": 0.7033,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.34,
|
342 |
+
"grad_norm": 0.45708129790603597,
|
343 |
+
"learning_rate": 6.72e-06,
|
344 |
+
"loss": 0.7038,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.35,
|
349 |
+
"grad_norm": 0.47564264251663835,
|
350 |
+
"learning_rate": 6.8599999999999995e-06,
|
351 |
+
"loss": 0.6974,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.36,
|
356 |
+
"grad_norm": 0.4561386006973232,
|
357 |
+
"learning_rate": 7e-06,
|
358 |
+
"loss": 0.702,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.36,
|
363 |
+
"grad_norm": 0.4318637464381274,
|
364 |
+
"learning_rate": 6.999934216315939e-06,
|
365 |
+
"loss": 0.7054,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.37,
|
370 |
+
"grad_norm": 0.47772094451329594,
|
371 |
+
"learning_rate": 6.999736867736609e-06,
|
372 |
+
"loss": 0.6946,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.38,
|
377 |
+
"grad_norm": 0.45891608711087106,
|
378 |
+
"learning_rate": 6.9994079616804764e-06,
|
379 |
+
"loss": 0.6952,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.38,
|
384 |
+
"grad_norm": 0.46731862765960264,
|
385 |
+
"learning_rate": 6.9989475105113426e-06,
|
386 |
+
"loss": 0.6888,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.39,
|
391 |
+
"grad_norm": 0.4667223098464595,
|
392 |
+
"learning_rate": 6.998355531537879e-06,
|
393 |
+
"loss": 0.7017,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.4,
|
398 |
+
"grad_norm": 0.46285196540927176,
|
399 |
+
"learning_rate": 6.997632047012975e-06,
|
400 |
+
"loss": 0.7051,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.41,
|
405 |
+
"grad_norm": 0.48044807815149254,
|
406 |
+
"learning_rate": 6.996777084132904e-06,
|
407 |
+
"loss": 0.701,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.41,
|
412 |
+
"grad_norm": 0.47600970966063727,
|
413 |
+
"learning_rate": 6.995790675036298e-06,
|
414 |
+
"loss": 0.7001,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.42,
|
419 |
+
"grad_norm": 0.4494522317826872,
|
420 |
+
"learning_rate": 6.994672856802944e-06,
|
421 |
+
"loss": 0.7042,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.43,
|
426 |
+
"grad_norm": 0.4623294450089233,
|
427 |
+
"learning_rate": 6.993423671452386e-06,
|
428 |
+
"loss": 0.69,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.43,
|
433 |
+
"grad_norm": 0.43825456028915594,
|
434 |
+
"learning_rate": 6.9920431659423436e-06,
|
435 |
+
"loss": 0.6996,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.44,
|
440 |
+
"grad_norm": 0.4568055452742323,
|
441 |
+
"learning_rate": 6.990531392166956e-06,
|
442 |
+
"loss": 0.6939,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.45,
|
447 |
+
"grad_norm": 0.4302767633743081,
|
448 |
+
"learning_rate": 6.988888406954821e-06,
|
449 |
+
"loss": 0.6898,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.46,
|
454 |
+
"grad_norm": 0.4762852616798798,
|
455 |
+
"learning_rate": 6.9871142720668644e-06,
|
456 |
+
"loss": 0.703,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.46,
|
461 |
+
"grad_norm": 0.4572026337069386,
|
462 |
+
"learning_rate": 6.985209054194017e-06,
|
463 |
+
"loss": 0.7004,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.47,
|
468 |
+
"grad_norm": 0.45803902960498666,
|
469 |
+
"learning_rate": 6.983172824954708e-06,
|
470 |
+
"loss": 0.6853,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.48,
|
475 |
+
"grad_norm": 0.44353624606381903,
|
476 |
+
"learning_rate": 6.9810056608921725e-06,
|
477 |
+
"loss": 0.7074,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.48,
|
482 |
+
"grad_norm": 0.44517458769087626,
|
483 |
+
"learning_rate": 6.978707643471573e-06,
|
484 |
+
"loss": 0.6988,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.49,
|
489 |
+
"grad_norm": 0.4616555458392388,
|
490 |
+
"learning_rate": 6.97627885907694e-06,
|
491 |
+
"loss": 0.7034,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.5,
|
496 |
+
"grad_norm": 0.4770896081066365,
|
497 |
+
"learning_rate": 6.973719399007923e-06,
|
498 |
+
"loss": 0.6935,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.5,
|
503 |
+
"grad_norm": 0.45665921054521347,
|
504 |
+
"learning_rate": 6.9710293594763545e-06,
|
505 |
+
"loss": 0.6773,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.51,
|
510 |
+
"grad_norm": 0.48834217157342125,
|
511 |
+
"learning_rate": 6.968208841602645e-06,
|
512 |
+
"loss": 0.6974,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.52,
|
517 |
+
"grad_norm": 0.4661409470252182,
|
518 |
+
"learning_rate": 6.965257951411967e-06,
|
519 |
+
"loss": 0.6796,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.53,
|
524 |
+
"grad_norm": 0.4249423447942054,
|
525 |
+
"learning_rate": 6.962176799830279e-06,
|
526 |
+
"loss": 0.686,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.53,
|
531 |
+
"grad_norm": 0.4517631229399239,
|
532 |
+
"learning_rate": 6.958965502680155e-06,
|
533 |
+
"loss": 0.6968,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.54,
|
538 |
+
"grad_norm": 0.4334006789419362,
|
539 |
+
"learning_rate": 6.955624180676427e-06,
|
540 |
+
"loss": 0.705,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.55,
|
545 |
+
"grad_norm": 0.44354874837116653,
|
546 |
+
"learning_rate": 6.9521529594216516e-06,
|
547 |
+
"loss": 0.6954,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.55,
|
552 |
+
"grad_norm": 0.4606606226964418,
|
553 |
+
"learning_rate": 6.948551969401381e-06,
|
554 |
+
"loss": 0.6965,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.56,
|
559 |
+
"grad_norm": 0.46221163538458165,
|
560 |
+
"learning_rate": 6.94482134597927e-06,
|
561 |
+
"loss": 0.695,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.57,
|
566 |
+
"grad_norm": 0.4636824720485381,
|
567 |
+
"learning_rate": 6.940961229391975e-06,
|
568 |
+
"loss": 0.6919,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.58,
|
573 |
+
"grad_norm": 0.4450527833539268,
|
574 |
+
"learning_rate": 6.936971764743891e-06,
|
575 |
+
"loss": 0.6977,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.58,
|
580 |
+
"grad_norm": 0.4358125416971688,
|
581 |
+
"learning_rate": 6.932853102001694e-06,
|
582 |
+
"loss": 0.6998,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.59,
|
587 |
+
"grad_norm": 0.45623590289661414,
|
588 |
+
"learning_rate": 6.928605395988701e-06,
|
589 |
+
"loss": 0.6954,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.6,
|
594 |
+
"grad_norm": 0.4536975058820564,
|
595 |
+
"learning_rate": 6.924228806379058e-06,
|
596 |
+
"loss": 0.6742,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.6,
|
601 |
+
"grad_norm": 0.4563719379438227,
|
602 |
+
"learning_rate": 6.919723497691728e-06,
|
603 |
+
"loss": 0.6921,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.61,
|
608 |
+
"grad_norm": 0.45279224746852664,
|
609 |
+
"learning_rate": 6.915089639284313e-06,
|
610 |
+
"loss": 0.6861,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.62,
|
615 |
+
"grad_norm": 0.466062080319079,
|
616 |
+
"learning_rate": 6.910327405346686e-06,
|
617 |
+
"loss": 0.6895,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.63,
|
622 |
+
"grad_norm": 0.443881137156012,
|
623 |
+
"learning_rate": 6.905436974894443e-06,
|
624 |
+
"loss": 0.7008,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.63,
|
629 |
+
"grad_norm": 0.47752762402129206,
|
630 |
+
"learning_rate": 6.900418531762173e-06,
|
631 |
+
"loss": 0.6985,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.64,
|
636 |
+
"grad_norm": 0.4542692407893758,
|
637 |
+
"learning_rate": 6.89527226459655e-06,
|
638 |
+
"loss": 0.6822,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.65,
|
643 |
+
"grad_norm": 0.4314820719874765,
|
644 |
+
"learning_rate": 6.889998366849237e-06,
|
645 |
+
"loss": 0.691,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.65,
|
650 |
+
"grad_norm": 0.4278370127210443,
|
651 |
+
"learning_rate": 6.884597036769621e-06,
|
652 |
+
"loss": 0.689,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.66,
|
657 |
+
"grad_norm": 0.45134601911703476,
|
658 |
+
"learning_rate": 6.879068477397353e-06,
|
659 |
+
"loss": 0.6898,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.67,
|
664 |
+
"grad_norm": 0.45160503192413054,
|
665 |
+
"learning_rate": 6.87341289655472e-06,
|
666 |
+
"loss": 0.6869,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.68,
|
671 |
+
"grad_norm": 0.41025143635863104,
|
672 |
+
"learning_rate": 6.867630506838833e-06,
|
673 |
+
"loss": 0.6984,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.68,
|
678 |
+
"grad_norm": 0.46520301654074564,
|
679 |
+
"learning_rate": 6.861721525613633e-06,
|
680 |
+
"loss": 0.6843,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.69,
|
685 |
+
"grad_norm": 0.451991102882798,
|
686 |
+
"learning_rate": 6.8556861750017235e-06,
|
687 |
+
"loss": 0.6962,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.7,
|
692 |
+
"grad_norm": 0.418111038766468,
|
693 |
+
"learning_rate": 6.849524681876018e-06,
|
694 |
+
"loss": 0.6797,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.7,
|
699 |
+
"grad_norm": 0.4403261547939229,
|
700 |
+
"learning_rate": 6.843237277851211e-06,
|
701 |
+
"loss": 0.6965,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.71,
|
706 |
+
"grad_norm": 0.426598785059419,
|
707 |
+
"learning_rate": 6.836824199275074e-06,
|
708 |
+
"loss": 0.6821,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.72,
|
713 |
+
"grad_norm": 0.42988247771547117,
|
714 |
+
"learning_rate": 6.830285687219569e-06,
|
715 |
+
"loss": 0.6911,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.73,
|
720 |
+
"grad_norm": 0.452230475071558,
|
721 |
+
"learning_rate": 6.823621987471789e-06,
|
722 |
+
"loss": 0.6851,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.73,
|
727 |
+
"grad_norm": 0.4267205539811686,
|
728 |
+
"learning_rate": 6.816833350524716e-06,
|
729 |
+
"loss": 0.6777,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.74,
|
734 |
+
"grad_norm": 0.44148424584394874,
|
735 |
+
"learning_rate": 6.809920031567808e-06,
|
736 |
+
"loss": 0.6838,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.75,
|
741 |
+
"grad_norm": 0.43306877795839893,
|
742 |
+
"learning_rate": 6.802882290477399e-06,
|
743 |
+
"loss": 0.6864,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.75,
|
748 |
+
"grad_norm": 0.4952482617663558,
|
749 |
+
"learning_rate": 6.79572039180694e-06,
|
750 |
+
"loss": 0.6904,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.76,
|
755 |
+
"grad_norm": 0.45382453893592856,
|
756 |
+
"learning_rate": 6.788434604777048e-06,
|
757 |
+
"loss": 0.6795,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.77,
|
762 |
+
"grad_norm": 0.452960843334945,
|
763 |
+
"learning_rate": 6.781025203265388e-06,
|
764 |
+
"loss": 0.6891,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.78,
|
769 |
+
"grad_norm": 0.4537364245497661,
|
770 |
+
"learning_rate": 6.773492465796373e-06,
|
771 |
+
"loss": 0.6907,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.78,
|
776 |
+
"grad_norm": 0.44929090527897886,
|
777 |
+
"learning_rate": 6.765836675530703e-06,
|
778 |
+
"loss": 0.6798,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.79,
|
783 |
+
"grad_norm": 0.46381413350008455,
|
784 |
+
"learning_rate": 6.758058120254715e-06,
|
785 |
+
"loss": 0.6716,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.8,
|
790 |
+
"grad_norm": 0.4309028536458763,
|
791 |
+
"learning_rate": 6.750157092369563e-06,
|
792 |
+
"loss": 0.6799,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.8,
|
797 |
+
"grad_norm": 0.43717422966700575,
|
798 |
+
"learning_rate": 6.742133888880233e-06,
|
799 |
+
"loss": 0.6883,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.81,
|
804 |
+
"grad_norm": 0.4459700930425581,
|
805 |
+
"learning_rate": 6.7339888113843696e-06,
|
806 |
+
"loss": 0.6891,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.82,
|
811 |
+
"grad_norm": 0.44045298948848877,
|
812 |
+
"learning_rate": 6.725722166060951e-06,
|
813 |
+
"loss": 0.6817,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.82,
|
818 |
+
"grad_norm": 0.4485899862146157,
|
819 |
+
"learning_rate": 6.717334263658766e-06,
|
820 |
+
"loss": 0.6897,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.83,
|
825 |
+
"grad_norm": 0.45682000330961775,
|
826 |
+
"learning_rate": 6.70882541948474e-06,
|
827 |
+
"loss": 0.6776,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.84,
|
832 |
+
"grad_norm": 0.48037041295136884,
|
833 |
+
"learning_rate": 6.700195953392085e-06,
|
834 |
+
"loss": 0.6872,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.85,
|
839 |
+
"grad_norm": 0.44334741491819346,
|
840 |
+
"learning_rate": 6.691446189768268e-06,
|
841 |
+
"loss": 0.6798,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.85,
|
846 |
+
"grad_norm": 0.4674740757760583,
|
847 |
+
"learning_rate": 6.682576457522825e-06,
|
848 |
+
"loss": 0.6977,
|
849 |
+
"step": 1200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.86,
|
853 |
+
"grad_norm": 0.4696181980144796,
|
854 |
+
"learning_rate": 6.673587090074993e-06,
|
855 |
+
"loss": 0.6896,
|
856 |
+
"step": 1210
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.87,
|
860 |
+
"grad_norm": 0.4593954697303246,
|
861 |
+
"learning_rate": 6.664478425341176e-06,
|
862 |
+
"loss": 0.6749,
|
863 |
+
"step": 1220
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.87,
|
867 |
+
"grad_norm": 0.41647753357217115,
|
868 |
+
"learning_rate": 6.655250805722244e-06,
|
869 |
+
"loss": 0.6894,
|
870 |
+
"step": 1230
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.88,
|
874 |
+
"grad_norm": 0.4245409839045758,
|
875 |
+
"learning_rate": 6.645904578090662e-06,
|
876 |
+
"loss": 0.6693,
|
877 |
+
"step": 1240
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.89,
|
881 |
+
"grad_norm": 0.45490183172736,
|
882 |
+
"learning_rate": 6.636440093777451e-06,
|
883 |
+
"loss": 0.6881,
|
884 |
+
"step": 1250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.9,
|
888 |
+
"grad_norm": 0.4633877447287089,
|
889 |
+
"learning_rate": 6.626857708558979e-06,
|
890 |
+
"loss": 0.6953,
|
891 |
+
"step": 1260
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.9,
|
895 |
+
"grad_norm": 0.45069656102358646,
|
896 |
+
"learning_rate": 6.617157782643591e-06,
|
897 |
+
"loss": 0.6787,
|
898 |
+
"step": 1270
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.91,
|
902 |
+
"grad_norm": 0.44438426822862237,
|
903 |
+
"learning_rate": 6.6073406806580646e-06,
|
904 |
+
"loss": 0.6859,
|
905 |
+
"step": 1280
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.92,
|
909 |
+
"grad_norm": 0.4335460798475662,
|
910 |
+
"learning_rate": 6.597406771633906e-06,
|
911 |
+
"loss": 0.6829,
|
912 |
+
"step": 1290
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.92,
|
916 |
+
"grad_norm": 0.4282672786086354,
|
917 |
+
"learning_rate": 6.587356428993477e-06,
|
918 |
+
"loss": 0.6831,
|
919 |
+
"step": 1300
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.93,
|
923 |
+
"grad_norm": 0.46465171297436636,
|
924 |
+
"learning_rate": 6.577190030535957e-06,
|
925 |
+
"loss": 0.6778,
|
926 |
+
"step": 1310
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.94,
|
930 |
+
"grad_norm": 0.4590812961346198,
|
931 |
+
"learning_rate": 6.566907958423142e-06,
|
932 |
+
"loss": 0.6701,
|
933 |
+
"step": 1320
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.95,
|
937 |
+
"grad_norm": 0.4180631333820519,
|
938 |
+
"learning_rate": 6.5565105991650815e-06,
|
939 |
+
"loss": 0.6825,
|
940 |
+
"step": 1330
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.95,
|
944 |
+
"grad_norm": 0.42684427340923925,
|
945 |
+
"learning_rate": 6.545998343605544e-06,
|
946 |
+
"loss": 0.6823,
|
947 |
+
"step": 1340
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.96,
|
951 |
+
"grad_norm": 0.6515643833482546,
|
952 |
+
"learning_rate": 6.5353715869073275e-06,
|
953 |
+
"loss": 0.6748,
|
954 |
+
"step": 1350
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.97,
|
958 |
+
"grad_norm": 0.42995190312179654,
|
959 |
+
"learning_rate": 6.524630728537408e-06,
|
960 |
+
"loss": 0.6896,
|
961 |
+
"step": 1360
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.97,
|
965 |
+
"grad_norm": 0.4307066820527156,
|
966 |
+
"learning_rate": 6.513776172251919e-06,
|
967 |
+
"loss": 0.6821,
|
968 |
+
"step": 1370
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.98,
|
972 |
+
"grad_norm": 0.4401373902110004,
|
973 |
+
"learning_rate": 6.5028083260809735e-06,
|
974 |
+
"loss": 0.6729,
|
975 |
+
"step": 1380
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.99,
|
979 |
+
"grad_norm": 0.420372235119902,
|
980 |
+
"learning_rate": 6.491727602313334e-06,
|
981 |
+
"loss": 0.6812,
|
982 |
+
"step": 1390
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.0,
|
986 |
+
"grad_norm": 0.44387468527179835,
|
987 |
+
"learning_rate": 6.4805344174808986e-06,
|
988 |
+
"loss": 0.6713,
|
989 |
+
"step": 1400
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.0,
|
993 |
+
"grad_norm": 0.4224291568526637,
|
994 |
+
"learning_rate": 6.4692291923430634e-06,
|
995 |
+
"loss": 0.6928,
|
996 |
+
"step": 1410
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.01,
|
1000 |
+
"grad_norm": 0.42342827072921446,
|
1001 |
+
"learning_rate": 6.457812351870889e-06,
|
1002 |
+
"loss": 0.6925,
|
1003 |
+
"step": 1420
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.02,
|
1007 |
+
"grad_norm": 0.4614687139520872,
|
1008 |
+
"learning_rate": 6.446284325231132e-06,
|
1009 |
+
"loss": 0.6804,
|
1010 |
+
"step": 1430
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.01,
|
1014 |
+
"grad_norm": 0.4513094113300999,
|
1015 |
+
"learning_rate": 6.434645545770116e-06,
|
1016 |
+
"loss": 0.649,
|
1017 |
+
"step": 1440
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.01,
|
1021 |
+
"grad_norm": 0.46129242006354043,
|
1022 |
+
"learning_rate": 6.422896450997434e-06,
|
1023 |
+
"loss": 0.6244,
|
1024 |
+
"step": 1450
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.02,
|
1028 |
+
"grad_norm": 0.44352477273420793,
|
1029 |
+
"learning_rate": 6.411037482569509e-06,
|
1030 |
+
"loss": 0.6231,
|
1031 |
+
"step": 1460
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.03,
|
1035 |
+
"grad_norm": 0.43347730975194065,
|
1036 |
+
"learning_rate": 6.399069086272988e-06,
|
1037 |
+
"loss": 0.6163,
|
1038 |
+
"step": 1470
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.03,
|
1042 |
+
"grad_norm": 0.5042235757137699,
|
1043 |
+
"learning_rate": 6.386991712007985e-06,
|
1044 |
+
"loss": 0.6295,
|
1045 |
+
"step": 1480
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.04,
|
1049 |
+
"grad_norm": 0.4635765704926019,
|
1050 |
+
"learning_rate": 6.374805813771171e-06,
|
1051 |
+
"loss": 0.6145,
|
1052 |
+
"step": 1490
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.05,
|
1056 |
+
"grad_norm": 0.4672283056367441,
|
1057 |
+
"learning_rate": 6.362511849638706e-06,
|
1058 |
+
"loss": 0.6248,
|
1059 |
+
"step": 1500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.05,
|
1063 |
+
"grad_norm": 0.44386378239345664,
|
1064 |
+
"learning_rate": 6.3501102817490184e-06,
|
1065 |
+
"loss": 0.6208,
|
1066 |
+
"step": 1510
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.06,
|
1070 |
+
"grad_norm": 0.45014512458671113,
|
1071 |
+
"learning_rate": 6.337601576285438e-06,
|
1072 |
+
"loss": 0.6241,
|
1073 |
+
"step": 1520
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.07,
|
1077 |
+
"grad_norm": 0.47077991205008496,
|
1078 |
+
"learning_rate": 6.324986203458665e-06,
|
1079 |
+
"loss": 0.637,
|
1080 |
+
"step": 1530
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.08,
|
1084 |
+
"grad_norm": 0.43971957336428713,
|
1085 |
+
"learning_rate": 6.3122646374891014e-06,
|
1086 |
+
"loss": 0.6274,
|
1087 |
+
"step": 1540
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.08,
|
1091 |
+
"grad_norm": 0.45398595356146343,
|
1092 |
+
"learning_rate": 6.299437356589018e-06,
|
1093 |
+
"loss": 0.6172,
|
1094 |
+
"step": 1550
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.09,
|
1098 |
+
"grad_norm": 0.4638039927896387,
|
1099 |
+
"learning_rate": 6.2865048429445835e-06,
|
1100 |
+
"loss": 0.6162,
|
1101 |
+
"step": 1560
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.1,
|
1105 |
+
"grad_norm": 0.456884430778857,
|
1106 |
+
"learning_rate": 6.273467582697736e-06,
|
1107 |
+
"loss": 0.6358,
|
1108 |
+
"step": 1570
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.1,
|
1112 |
+
"grad_norm": 0.4513273711536076,
|
1113 |
+
"learning_rate": 6.260326065927908e-06,
|
1114 |
+
"loss": 0.6256,
|
1115 |
+
"step": 1580
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.11,
|
1119 |
+
"grad_norm": 0.4585546365167011,
|
1120 |
+
"learning_rate": 6.247080786633608e-06,
|
1121 |
+
"loss": 0.6343,
|
1122 |
+
"step": 1590
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.12,
|
1126 |
+
"grad_norm": 0.4837809920582229,
|
1127 |
+
"learning_rate": 6.233732242713847e-06,
|
1128 |
+
"loss": 0.6205,
|
1129 |
+
"step": 1600
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 1.13,
|
1133 |
+
"grad_norm": 0.45062031874118463,
|
1134 |
+
"learning_rate": 6.220280935949423e-06,
|
1135 |
+
"loss": 0.6181,
|
1136 |
+
"step": 1610
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.13,
|
1140 |
+
"grad_norm": 0.4934582241182996,
|
1141 |
+
"learning_rate": 6.206727371984055e-06,
|
1142 |
+
"loss": 0.6101,
|
1143 |
+
"step": 1620
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.14,
|
1147 |
+
"grad_norm": 0.45848465100131724,
|
1148 |
+
"learning_rate": 6.193072060305386e-06,
|
1149 |
+
"loss": 0.6274,
|
1150 |
+
"step": 1630
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 1.15,
|
1154 |
+
"grad_norm": 0.49225379713590917,
|
1155 |
+
"learning_rate": 6.17931551422582e-06,
|
1156 |
+
"loss": 0.6287,
|
1157 |
+
"step": 1640
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 1.15,
|
1161 |
+
"grad_norm": 0.43783738072351636,
|
1162 |
+
"learning_rate": 6.165458250863233e-06,
|
1163 |
+
"loss": 0.6322,
|
1164 |
+
"step": 1650
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 1.16,
|
1168 |
+
"grad_norm": 0.45111919610212603,
|
1169 |
+
"learning_rate": 6.15150079112153e-06,
|
1170 |
+
"loss": 0.6343,
|
1171 |
+
"step": 1660
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 1.17,
|
1175 |
+
"grad_norm": 0.7283719867926337,
|
1176 |
+
"learning_rate": 6.137443659671066e-06,
|
1177 |
+
"loss": 0.6245,
|
1178 |
+
"step": 1670
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.18,
|
1182 |
+
"grad_norm": 0.4317614230374671,
|
1183 |
+
"learning_rate": 6.123287384928924e-06,
|
1184 |
+
"loss": 0.6252,
|
1185 |
+
"step": 1680
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.18,
|
1189 |
+
"grad_norm": 0.43630742763076885,
|
1190 |
+
"learning_rate": 6.1090324990390505e-06,
|
1191 |
+
"loss": 0.6281,
|
1192 |
+
"step": 1690
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 1.19,
|
1196 |
+
"grad_norm": 0.49179102646470696,
|
1197 |
+
"learning_rate": 6.09467953785225e-06,
|
1198 |
+
"loss": 0.6304,
|
1199 |
+
"step": 1700
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 1.2,
|
1203 |
+
"grad_norm": 0.4269421327683836,
|
1204 |
+
"learning_rate": 6.080229040906045e-06,
|
1205 |
+
"loss": 0.6205,
|
1206 |
+
"step": 1710
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 1.2,
|
1210 |
+
"grad_norm": 0.44873848635658836,
|
1211 |
+
"learning_rate": 6.065681551404392e-06,
|
1212 |
+
"loss": 0.6203,
|
1213 |
+
"step": 1720
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 1.21,
|
1217 |
+
"grad_norm": 0.43522811508044484,
|
1218 |
+
"learning_rate": 6.051037616197267e-06,
|
1219 |
+
"loss": 0.6233,
|
1220 |
+
"step": 1730
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.22,
|
1224 |
+
"grad_norm": 0.43363424076560303,
|
1225 |
+
"learning_rate": 6.036297785760099e-06,
|
1226 |
+
"loss": 0.6274,
|
1227 |
+
"step": 1740
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.23,
|
1231 |
+
"grad_norm": 0.4420787259752861,
|
1232 |
+
"learning_rate": 6.0214626141730895e-06,
|
1233 |
+
"loss": 0.6388,
|
1234 |
+
"step": 1750
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 1.23,
|
1238 |
+
"grad_norm": 0.445119846862499,
|
1239 |
+
"learning_rate": 6.006532659100377e-06,
|
1240 |
+
"loss": 0.6107,
|
1241 |
+
"step": 1760
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.24,
|
1245 |
+
"grad_norm": 0.4380767674114949,
|
1246 |
+
"learning_rate": 5.991508481769071e-06,
|
1247 |
+
"loss": 0.6341,
|
1248 |
+
"step": 1770
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 1.25,
|
1252 |
+
"grad_norm": 0.44003117819419657,
|
1253 |
+
"learning_rate": 5.976390646948166e-06,
|
1254 |
+
"loss": 0.6344,
|
1255 |
+
"step": 1780
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 1.25,
|
1259 |
+
"grad_norm": 0.45806509086322245,
|
1260 |
+
"learning_rate": 5.961179722927302e-06,
|
1261 |
+
"loss": 0.6283,
|
1262 |
+
"step": 1790
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.26,
|
1266 |
+
"grad_norm": 0.4545928600817147,
|
1267 |
+
"learning_rate": 5.9458762814954016e-06,
|
1268 |
+
"loss": 0.6254,
|
1269 |
+
"step": 1800
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.27,
|
1273 |
+
"grad_norm": 0.4438181707408447,
|
1274 |
+
"learning_rate": 5.930480897919185e-06,
|
1275 |
+
"loss": 0.631,
|
1276 |
+
"step": 1810
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.28,
|
1280 |
+
"grad_norm": 0.44695115171581695,
|
1281 |
+
"learning_rate": 5.9149941509215366e-06,
|
1282 |
+
"loss": 0.6338,
|
1283 |
+
"step": 1820
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.28,
|
1287 |
+
"grad_norm": 0.4280430227739119,
|
1288 |
+
"learning_rate": 5.899416622659754e-06,
|
1289 |
+
"loss": 0.6182,
|
1290 |
+
"step": 1830
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.29,
|
1294 |
+
"grad_norm": 0.458726186518369,
|
1295 |
+
"learning_rate": 5.883748898703666e-06,
|
1296 |
+
"loss": 0.6162,
|
1297 |
+
"step": 1840
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.3,
|
1301 |
+
"grad_norm": 0.43445566304338457,
|
1302 |
+
"learning_rate": 5.8679915680136155e-06,
|
1303 |
+
"loss": 0.6228,
|
1304 |
+
"step": 1850
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.3,
|
1308 |
+
"grad_norm": 0.44895947980462597,
|
1309 |
+
"learning_rate": 5.852145222918326e-06,
|
1310 |
+
"loss": 0.6373,
|
1311 |
+
"step": 1860
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.31,
|
1315 |
+
"grad_norm": 0.43403817083393664,
|
1316 |
+
"learning_rate": 5.83621045909263e-06,
|
1317 |
+
"loss": 0.6376,
|
1318 |
+
"step": 1870
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.32,
|
1322 |
+
"grad_norm": 0.4673939224968789,
|
1323 |
+
"learning_rate": 5.820187875535083e-06,
|
1324 |
+
"loss": 0.6215,
|
1325 |
+
"step": 1880
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.33,
|
1329 |
+
"grad_norm": 0.46323588428022766,
|
1330 |
+
"learning_rate": 5.804078074545439e-06,
|
1331 |
+
"loss": 0.6187,
|
1332 |
+
"step": 1890
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 1.33,
|
1336 |
+
"grad_norm": 0.4530033509696719,
|
1337 |
+
"learning_rate": 5.7878816617020204e-06,
|
1338 |
+
"loss": 0.6239,
|
1339 |
+
"step": 1900
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.34,
|
1343 |
+
"grad_norm": 0.4317929663828983,
|
1344 |
+
"learning_rate": 5.771599245838943e-06,
|
1345 |
+
"loss": 0.6168,
|
1346 |
+
"step": 1910
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.35,
|
1350 |
+
"grad_norm": 0.436592310414347,
|
1351 |
+
"learning_rate": 5.7552314390232364e-06,
|
1352 |
+
"loss": 0.6179,
|
1353 |
+
"step": 1920
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.35,
|
1357 |
+
"grad_norm": 0.4702835623046126,
|
1358 |
+
"learning_rate": 5.738778856531832e-06,
|
1359 |
+
"loss": 0.6272,
|
1360 |
+
"step": 1930
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.36,
|
1364 |
+
"grad_norm": 0.4619318889613922,
|
1365 |
+
"learning_rate": 5.72224211682844e-06,
|
1366 |
+
"loss": 0.6256,
|
1367 |
+
"step": 1940
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.37,
|
1371 |
+
"grad_norm": 0.49429029776316813,
|
1372 |
+
"learning_rate": 5.705621841540292e-06,
|
1373 |
+
"loss": 0.6283,
|
1374 |
+
"step": 1950
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.37,
|
1378 |
+
"grad_norm": 0.47054367378052575,
|
1379 |
+
"learning_rate": 5.688918655434783e-06,
|
1380 |
+
"loss": 0.6156,
|
1381 |
+
"step": 1960
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.38,
|
1385 |
+
"grad_norm": 0.45638233691668284,
|
1386 |
+
"learning_rate": 5.67213318639598e-06,
|
1387 |
+
"loss": 0.6257,
|
1388 |
+
"step": 1970
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.39,
|
1392 |
+
"grad_norm": 0.43819489071261747,
|
1393 |
+
"learning_rate": 5.655266065401021e-06,
|
1394 |
+
"loss": 0.6255,
|
1395 |
+
"step": 1980
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.4,
|
1399 |
+
"grad_norm": 0.45603698357049277,
|
1400 |
+
"learning_rate": 5.638317926496398e-06,
|
1401 |
+
"loss": 0.6267,
|
1402 |
+
"step": 1990
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.4,
|
1406 |
+
"grad_norm": 0.45518318702227223,
|
1407 |
+
"learning_rate": 5.6212894067741176e-06,
|
1408 |
+
"loss": 0.6357,
|
1409 |
+
"step": 2000
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.41,
|
1413 |
+
"grad_norm": 0.4402683023420712,
|
1414 |
+
"learning_rate": 5.604181146347758e-06,
|
1415 |
+
"loss": 0.6311,
|
1416 |
+
"step": 2010
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.42,
|
1420 |
+
"grad_norm": 0.4498808898227514,
|
1421 |
+
"learning_rate": 5.5869937883284065e-06,
|
1422 |
+
"loss": 0.6213,
|
1423 |
+
"step": 2020
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 1.42,
|
1427 |
+
"grad_norm": 0.46040698115780887,
|
1428 |
+
"learning_rate": 5.569727978800478e-06,
|
1429 |
+
"loss": 0.6223,
|
1430 |
+
"step": 2030
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.43,
|
1434 |
+
"grad_norm": 0.44168864627397236,
|
1435 |
+
"learning_rate": 5.552384366797435e-06,
|
1436 |
+
"loss": 0.6268,
|
1437 |
+
"step": 2040
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.44,
|
1441 |
+
"grad_norm": 0.45494321235524204,
|
1442 |
+
"learning_rate": 5.534963604277388e-06,
|
1443 |
+
"loss": 0.6193,
|
1444 |
+
"step": 2050
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 1.45,
|
1448 |
+
"grad_norm": 0.44543538788588954,
|
1449 |
+
"learning_rate": 5.517466346098587e-06,
|
1450 |
+
"loss": 0.6311,
|
1451 |
+
"step": 2060
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 1.45,
|
1455 |
+
"grad_norm": 0.45370006917207745,
|
1456 |
+
"learning_rate": 5.4998932499948055e-06,
|
1457 |
+
"loss": 0.6263,
|
1458 |
+
"step": 2070
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 1.46,
|
1462 |
+
"grad_norm": 0.4457705866746906,
|
1463 |
+
"learning_rate": 5.482244976550616e-06,
|
1464 |
+
"loss": 0.6267,
|
1465 |
+
"step": 2080
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.47,
|
1469 |
+
"grad_norm": 0.44178347775287935,
|
1470 |
+
"learning_rate": 5.464522189176559e-06,
|
1471 |
+
"loss": 0.6168,
|
1472 |
+
"step": 2090
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.47,
|
1476 |
+
"grad_norm": 0.4510685099498634,
|
1477 |
+
"learning_rate": 5.446725554084202e-06,
|
1478 |
+
"loss": 0.6071,
|
1479 |
+
"step": 2100
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.48,
|
1483 |
+
"grad_norm": 0.4463056440103558,
|
1484 |
+
"learning_rate": 5.4288557402611e-06,
|
1485 |
+
"loss": 0.6193,
|
1486 |
+
"step": 2110
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 1.49,
|
1490 |
+
"grad_norm": 0.4450825773000299,
|
1491 |
+
"learning_rate": 5.410913419445647e-06,
|
1492 |
+
"loss": 0.6114,
|
1493 |
+
"step": 2120
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 1.5,
|
1497 |
+
"grad_norm": 0.4609214677792106,
|
1498 |
+
"learning_rate": 5.3928992661018194e-06,
|
1499 |
+
"loss": 0.6255,
|
1500 |
+
"step": 2130
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.5,
|
1504 |
+
"grad_norm": 0.48687583594807843,
|
1505 |
+
"learning_rate": 5.374813957393832e-06,
|
1506 |
+
"loss": 0.6286,
|
1507 |
+
"step": 2140
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.51,
|
1511 |
+
"grad_norm": 0.47549284042607015,
|
1512 |
+
"learning_rate": 5.356658173160674e-06,
|
1513 |
+
"loss": 0.6143,
|
1514 |
+
"step": 2150
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.52,
|
1518 |
+
"grad_norm": 0.49532165280916113,
|
1519 |
+
"learning_rate": 5.338432595890562e-06,
|
1520 |
+
"loss": 0.6249,
|
1521 |
+
"step": 2160
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.52,
|
1525 |
+
"grad_norm": 0.45253915740067313,
|
1526 |
+
"learning_rate": 5.320137910695275e-06,
|
1527 |
+
"loss": 0.6257,
|
1528 |
+
"step": 2170
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 1.53,
|
1532 |
+
"grad_norm": 0.43721435814923637,
|
1533 |
+
"learning_rate": 5.301774805284408e-06,
|
1534 |
+
"loss": 0.6178,
|
1535 |
+
"step": 2180
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 1.54,
|
1539 |
+
"grad_norm": 0.4683301857922748,
|
1540 |
+
"learning_rate": 5.2833439699395175e-06,
|
1541 |
+
"loss": 0.6173,
|
1542 |
+
"step": 2190
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 1.55,
|
1546 |
+
"grad_norm": 0.43871464981194036,
|
1547 |
+
"learning_rate": 5.264846097488175e-06,
|
1548 |
+
"loss": 0.6214,
|
1549 |
+
"step": 2200
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 1.55,
|
1553 |
+
"grad_norm": 0.4524085111628937,
|
1554 |
+
"learning_rate": 5.246281883277922e-06,
|
1555 |
+
"loss": 0.6346,
|
1556 |
+
"step": 2210
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.56,
|
1560 |
+
"grad_norm": 0.4468406698869542,
|
1561 |
+
"learning_rate": 5.227652025150132e-06,
|
1562 |
+
"loss": 0.614,
|
1563 |
+
"step": 2220
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.57,
|
1567 |
+
"grad_norm": 0.468252187542662,
|
1568 |
+
"learning_rate": 5.208957223413776e-06,
|
1569 |
+
"loss": 0.6057,
|
1570 |
+
"step": 2230
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 1.57,
|
1574 |
+
"grad_norm": 0.46458186348478814,
|
1575 |
+
"learning_rate": 5.1901981808191e-06,
|
1576 |
+
"loss": 0.6192,
|
1577 |
+
"step": 2240
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.58,
|
1581 |
+
"grad_norm": 0.4589397282179608,
|
1582 |
+
"learning_rate": 5.1713756025312095e-06,
|
1583 |
+
"loss": 0.6197,
|
1584 |
+
"step": 2250
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 1.59,
|
1588 |
+
"grad_norm": 0.4733441471283767,
|
1589 |
+
"learning_rate": 5.1524901961035555e-06,
|
1590 |
+
"loss": 0.6146,
|
1591 |
+
"step": 2260
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 1.6,
|
1595 |
+
"grad_norm": 0.49573981085967583,
|
1596 |
+
"learning_rate": 5.1335426714513436e-06,
|
1597 |
+
"loss": 0.6205,
|
1598 |
+
"step": 2270
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.6,
|
1602 |
+
"grad_norm": 0.45753588591278177,
|
1603 |
+
"learning_rate": 5.114533740824848e-06,
|
1604 |
+
"loss": 0.6194,
|
1605 |
+
"step": 2280
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.61,
|
1609 |
+
"grad_norm": 0.44981584915327405,
|
1610 |
+
"learning_rate": 5.095464118782631e-06,
|
1611 |
+
"loss": 0.6285,
|
1612 |
+
"step": 2290
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 1.62,
|
1616 |
+
"grad_norm": 0.44941448245640475,
|
1617 |
+
"learning_rate": 5.076334522164687e-06,
|
1618 |
+
"loss": 0.6183,
|
1619 |
+
"step": 2300
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 1.62,
|
1623 |
+
"grad_norm": 0.46348841235648264,
|
1624 |
+
"learning_rate": 5.057145670065498e-06,
|
1625 |
+
"loss": 0.6178,
|
1626 |
+
"step": 2310
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 1.63,
|
1630 |
+
"grad_norm": 0.4819885899523623,
|
1631 |
+
"learning_rate": 5.037898283806995e-06,
|
1632 |
+
"loss": 0.6209,
|
1633 |
+
"step": 2320
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 1.64,
|
1637 |
+
"grad_norm": 0.45974762343297226,
|
1638 |
+
"learning_rate": 5.018593086911453e-06,
|
1639 |
+
"loss": 0.6144,
|
1640 |
+
"step": 2330
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.65,
|
1644 |
+
"grad_norm": 0.4832719455105882,
|
1645 |
+
"learning_rate": 4.999230805074284e-06,
|
1646 |
+
"loss": 0.6255,
|
1647 |
+
"step": 2340
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.65,
|
1651 |
+
"grad_norm": 0.4580501245903807,
|
1652 |
+
"learning_rate": 4.979812166136764e-06,
|
1653 |
+
"loss": 0.622,
|
1654 |
+
"step": 2350
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 1.66,
|
1658 |
+
"grad_norm": 0.4869292416366864,
|
1659 |
+
"learning_rate": 4.960337900058668e-06,
|
1660 |
+
"loss": 0.6295,
|
1661 |
+
"step": 2360
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 1.67,
|
1665 |
+
"grad_norm": 0.44734991176527494,
|
1666 |
+
"learning_rate": 4.940808738890834e-06,
|
1667 |
+
"loss": 0.61,
|
1668 |
+
"step": 2370
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 1.67,
|
1672 |
+
"grad_norm": 0.4836741219786191,
|
1673 |
+
"learning_rate": 4.921225416747647e-06,
|
1674 |
+
"loss": 0.6131,
|
1675 |
+
"step": 2380
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 1.68,
|
1679 |
+
"grad_norm": 0.43868937063180397,
|
1680 |
+
"learning_rate": 4.901588669779433e-06,
|
1681 |
+
"loss": 0.6261,
|
1682 |
+
"step": 2390
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 1.69,
|
1686 |
+
"grad_norm": 0.4549440779907735,
|
1687 |
+
"learning_rate": 4.881899236144797e-06,
|
1688 |
+
"loss": 0.6216,
|
1689 |
+
"step": 2400
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 1.69,
|
1693 |
+
"grad_norm": 0.4561309327019534,
|
1694 |
+
"learning_rate": 4.862157855982875e-06,
|
1695 |
+
"loss": 0.6262,
|
1696 |
+
"step": 2410
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 1.7,
|
1700 |
+
"grad_norm": 0.4521274007767562,
|
1701 |
+
"learning_rate": 4.8423652713855e-06,
|
1702 |
+
"loss": 0.6214,
|
1703 |
+
"step": 2420
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 1.71,
|
1707 |
+
"grad_norm": 0.4876373591113174,
|
1708 |
+
"learning_rate": 4.822522226369323e-06,
|
1709 |
+
"loss": 0.6303,
|
1710 |
+
"step": 2430
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 1.72,
|
1714 |
+
"grad_norm": 0.4403247558369275,
|
1715 |
+
"learning_rate": 4.802629466847827e-06,
|
1716 |
+
"loss": 0.6236,
|
1717 |
+
"step": 2440
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 1.72,
|
1721 |
+
"grad_norm": 0.4392883872725244,
|
1722 |
+
"learning_rate": 4.782687740603308e-06,
|
1723 |
+
"loss": 0.6125,
|
1724 |
+
"step": 2450
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 1.73,
|
1728 |
+
"grad_norm": 0.44359149108855517,
|
1729 |
+
"learning_rate": 4.762697797258742e-06,
|
1730 |
+
"loss": 0.6208,
|
1731 |
+
"step": 2460
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 1.74,
|
1735 |
+
"grad_norm": 0.45892783125410747,
|
1736 |
+
"learning_rate": 4.742660388249629e-06,
|
1737 |
+
"loss": 0.6146,
|
1738 |
+
"step": 2470
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 1.74,
|
1742 |
+
"grad_norm": 0.46353318895549067,
|
1743 |
+
"learning_rate": 4.722576266795729e-06,
|
1744 |
+
"loss": 0.6199,
|
1745 |
+
"step": 2480
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 1.75,
|
1749 |
+
"grad_norm": 0.4642990741363008,
|
1750 |
+
"learning_rate": 4.702446187872758e-06,
|
1751 |
+
"loss": 0.6182,
|
1752 |
+
"step": 2490
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 1.76,
|
1756 |
+
"grad_norm": 0.44827792507065956,
|
1757 |
+
"learning_rate": 4.682270908184003e-06,
|
1758 |
+
"loss": 0.6246,
|
1759 |
+
"step": 2500
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 1.77,
|
1763 |
+
"grad_norm": 0.45544933714150454,
|
1764 |
+
"learning_rate": 4.662051186131876e-06,
|
1765 |
+
"loss": 0.6256,
|
1766 |
+
"step": 2510
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 1.77,
|
1770 |
+
"grad_norm": 0.4485500362120205,
|
1771 |
+
"learning_rate": 4.641787781789412e-06,
|
1772 |
+
"loss": 0.6181,
|
1773 |
+
"step": 2520
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 1.78,
|
1777 |
+
"grad_norm": 0.42631048877270405,
|
1778 |
+
"learning_rate": 4.6214814568716894e-06,
|
1779 |
+
"loss": 0.6331,
|
1780 |
+
"step": 2530
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 1.79,
|
1784 |
+
"grad_norm": 0.4714279586473698,
|
1785 |
+
"learning_rate": 4.601132974707202e-06,
|
1786 |
+
"loss": 0.628,
|
1787 |
+
"step": 2540
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 1.79,
|
1791 |
+
"grad_norm": 0.4228608375782349,
|
1792 |
+
"learning_rate": 4.5807431002091605e-06,
|
1793 |
+
"loss": 0.6054,
|
1794 |
+
"step": 2550
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 1.8,
|
1798 |
+
"grad_norm": 0.46872660848782277,
|
1799 |
+
"learning_rate": 4.560312599846746e-06,
|
1800 |
+
"loss": 0.6102,
|
1801 |
+
"step": 2560
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 1.81,
|
1805 |
+
"grad_norm": 0.4379038714391558,
|
1806 |
+
"learning_rate": 4.539842241616287e-06,
|
1807 |
+
"loss": 0.6143,
|
1808 |
+
"step": 2570
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 1.82,
|
1812 |
+
"grad_norm": 0.4719919574560488,
|
1813 |
+
"learning_rate": 4.519332795012404e-06,
|
1814 |
+
"loss": 0.6197,
|
1815 |
+
"step": 2580
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 1.82,
|
1819 |
+
"grad_norm": 0.4560470541146194,
|
1820 |
+
"learning_rate": 4.498785030999068e-06,
|
1821 |
+
"loss": 0.6132,
|
1822 |
+
"step": 2590
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 1.83,
|
1826 |
+
"grad_norm": 0.48502107778992737,
|
1827 |
+
"learning_rate": 4.478199721980633e-06,
|
1828 |
+
"loss": 0.631,
|
1829 |
+
"step": 2600
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 1.84,
|
1833 |
+
"grad_norm": 0.45288928959662245,
|
1834 |
+
"learning_rate": 4.457577641772792e-06,
|
1835 |
+
"loss": 0.6148,
|
1836 |
+
"step": 2610
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 1.84,
|
1840 |
+
"grad_norm": 0.45740004712492455,
|
1841 |
+
"learning_rate": 4.436919565573495e-06,
|
1842 |
+
"loss": 0.613,
|
1843 |
+
"step": 2620
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 1.85,
|
1847 |
+
"grad_norm": 0.4680089016865197,
|
1848 |
+
"learning_rate": 4.416226269933802e-06,
|
1849 |
+
"loss": 0.6109,
|
1850 |
+
"step": 2630
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 1.86,
|
1854 |
+
"grad_norm": 0.4498754217059588,
|
1855 |
+
"learning_rate": 4.395498532728697e-06,
|
1856 |
+
"loss": 0.627,
|
1857 |
+
"step": 2640
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 1.87,
|
1861 |
+
"grad_norm": 0.490510820257092,
|
1862 |
+
"learning_rate": 4.374737133127847e-06,
|
1863 |
+
"loss": 0.6287,
|
1864 |
+
"step": 2650
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 1.87,
|
1868 |
+
"grad_norm": 0.4384793154811805,
|
1869 |
+
"learning_rate": 4.35394285156631e-06,
|
1870 |
+
"loss": 0.6265,
|
1871 |
+
"step": 2660
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 1.88,
|
1875 |
+
"grad_norm": 0.42053564372682345,
|
1876 |
+
"learning_rate": 4.3331164697151995e-06,
|
1877 |
+
"loss": 0.6123,
|
1878 |
+
"step": 2670
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 1.89,
|
1882 |
+
"grad_norm": 0.44499220286710817,
|
1883 |
+
"learning_rate": 4.3122587704523015e-06,
|
1884 |
+
"loss": 0.6196,
|
1885 |
+
"step": 2680
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 1.89,
|
1889 |
+
"grad_norm": 0.4681953108721627,
|
1890 |
+
"learning_rate": 4.291370537832641e-06,
|
1891 |
+
"loss": 0.6301,
|
1892 |
+
"step": 2690
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 1.9,
|
1896 |
+
"grad_norm": 0.4245150987038812,
|
1897 |
+
"learning_rate": 4.2704525570590185e-06,
|
1898 |
+
"loss": 0.6203,
|
1899 |
+
"step": 2700
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 1.91,
|
1903 |
+
"grad_norm": 0.4738423212960381,
|
1904 |
+
"learning_rate": 4.2495056144524824e-06,
|
1905 |
+
"loss": 0.6159,
|
1906 |
+
"step": 2710
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 1.92,
|
1910 |
+
"grad_norm": 0.49926406862961464,
|
1911 |
+
"learning_rate": 4.228530497422779e-06,
|
1912 |
+
"loss": 0.6193,
|
1913 |
+
"step": 2720
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 1.92,
|
1917 |
+
"grad_norm": 0.4423739374256911,
|
1918 |
+
"learning_rate": 4.207527994438748e-06,
|
1919 |
+
"loss": 0.617,
|
1920 |
+
"step": 2730
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 1.93,
|
1924 |
+
"grad_norm": 0.44692873617751755,
|
1925 |
+
"learning_rate": 4.186498894998689e-06,
|
1926 |
+
"loss": 0.6135,
|
1927 |
+
"step": 2740
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 1.94,
|
1931 |
+
"grad_norm": 0.4358994979972626,
|
1932 |
+
"learning_rate": 4.165443989600678e-06,
|
1933 |
+
"loss": 0.6121,
|
1934 |
+
"step": 2750
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 1.94,
|
1938 |
+
"grad_norm": 0.46452930431844286,
|
1939 |
+
"learning_rate": 4.144364069712854e-06,
|
1940 |
+
"loss": 0.6167,
|
1941 |
+
"step": 2760
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 1.95,
|
1945 |
+
"grad_norm": 0.4816111574015236,
|
1946 |
+
"learning_rate": 4.123259927743669e-06,
|
1947 |
+
"loss": 0.6203,
|
1948 |
+
"step": 2770
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 1.96,
|
1952 |
+
"grad_norm": 0.45232518080467465,
|
1953 |
+
"learning_rate": 4.102132357012098e-06,
|
1954 |
+
"loss": 0.6199,
|
1955 |
+
"step": 2780
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 1.97,
|
1959 |
+
"grad_norm": 0.45515782747165817,
|
1960 |
+
"learning_rate": 4.08098215171782e-06,
|
1961 |
+
"loss": 0.6174,
|
1962 |
+
"step": 2790
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 1.97,
|
1966 |
+
"grad_norm": 0.44933646029392305,
|
1967 |
+
"learning_rate": 4.059810106911363e-06,
|
1968 |
+
"loss": 0.6188,
|
1969 |
+
"step": 2800
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 1.98,
|
1973 |
+
"grad_norm": 0.45633219759975596,
|
1974 |
+
"learning_rate": 4.038617018464217e-06,
|
1975 |
+
"loss": 0.6168,
|
1976 |
+
"step": 2810
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 1.99,
|
1980 |
+
"grad_norm": 0.4663774750339656,
|
1981 |
+
"learning_rate": 4.017403683038914e-06,
|
1982 |
+
"loss": 0.6199,
|
1983 |
+
"step": 2820
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 1.99,
|
1987 |
+
"grad_norm": 0.4565589400061048,
|
1988 |
+
"learning_rate": 3.996170898059087e-06,
|
1989 |
+
"loss": 0.6187,
|
1990 |
+
"step": 2830
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 2.0,
|
1994 |
+
"grad_norm": 0.45638098232431645,
|
1995 |
+
"learning_rate": 3.97491946167949e-06,
|
1996 |
+
"loss": 0.6133,
|
1997 |
+
"step": 2840
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 2.01,
|
2001 |
+
"grad_norm": 0.4330737687010161,
|
2002 |
+
"learning_rate": 3.9536501727559956e-06,
|
2003 |
+
"loss": 0.6179,
|
2004 |
+
"step": 2850
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 2.01,
|
2008 |
+
"grad_norm": 0.44620897297773393,
|
2009 |
+
"learning_rate": 3.932363830815563e-06,
|
2010 |
+
"loss": 0.606,
|
2011 |
+
"step": 2860
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 2.0,
|
2015 |
+
"grad_norm": 0.4727298461430969,
|
2016 |
+
"learning_rate": 3.911061236026192e-06,
|
2017 |
+
"loss": 0.5804,
|
2018 |
+
"step": 2870
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 2.01,
|
2022 |
+
"grad_norm": 0.5332182751767908,
|
2023 |
+
"learning_rate": 3.889743189166831e-06,
|
2024 |
+
"loss": 0.5552,
|
2025 |
+
"step": 2880
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 2.02,
|
2029 |
+
"grad_norm": 0.471875496548638,
|
2030 |
+
"learning_rate": 3.868410491597286e-06,
|
2031 |
+
"loss": 0.5467,
|
2032 |
+
"step": 2890
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 2.02,
|
2036 |
+
"grad_norm": 0.4869637805163024,
|
2037 |
+
"learning_rate": 3.847063945228094e-06,
|
2038 |
+
"loss": 0.5691,
|
2039 |
+
"step": 2900
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 2.03,
|
2043 |
+
"grad_norm": 0.4714418364302173,
|
2044 |
+
"learning_rate": 3.825704352490375e-06,
|
2045 |
+
"loss": 0.5788,
|
2046 |
+
"step": 2910
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 2.04,
|
2050 |
+
"grad_norm": 0.49636094733662106,
|
2051 |
+
"learning_rate": 3.804332516305672e-06,
|
2052 |
+
"loss": 0.5583,
|
2053 |
+
"step": 2920
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 2.05,
|
2057 |
+
"grad_norm": 0.48087980189754664,
|
2058 |
+
"learning_rate": 3.782949240055768e-06,
|
2059 |
+
"loss": 0.5632,
|
2060 |
+
"step": 2930
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 2.05,
|
2064 |
+
"grad_norm": 0.4873147689537464,
|
2065 |
+
"learning_rate": 3.7615553275524852e-06,
|
2066 |
+
"loss": 0.5602,
|
2067 |
+
"step": 2940
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 2.06,
|
2071 |
+
"grad_norm": 0.4603275098510104,
|
2072 |
+
"learning_rate": 3.74015158300747e-06,
|
2073 |
+
"loss": 0.5641,
|
2074 |
+
"step": 2950
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 2.07,
|
2078 |
+
"grad_norm": 0.5162191764305892,
|
2079 |
+
"learning_rate": 3.7187388110019604e-06,
|
2080 |
+
"loss": 0.5628,
|
2081 |
+
"step": 2960
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 2.07,
|
2085 |
+
"grad_norm": 0.49005627074608765,
|
2086 |
+
"learning_rate": 3.697317816456546e-06,
|
2087 |
+
"loss": 0.559,
|
2088 |
+
"step": 2970
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 2.08,
|
2092 |
+
"grad_norm": 0.4585568665283943,
|
2093 |
+
"learning_rate": 3.6758894046009037e-06,
|
2094 |
+
"loss": 0.547,
|
2095 |
+
"step": 2980
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 2.09,
|
2099 |
+
"grad_norm": 0.4506260874603515,
|
2100 |
+
"learning_rate": 3.6544543809435346e-06,
|
2101 |
+
"loss": 0.5433,
|
2102 |
+
"step": 2990
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 2.1,
|
2106 |
+
"grad_norm": 0.46595533436834136,
|
2107 |
+
"learning_rate": 3.6330135512414822e-06,
|
2108 |
+
"loss": 0.5666,
|
2109 |
+
"step": 3000
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 2.1,
|
2113 |
+
"grad_norm": 0.4690150184503375,
|
2114 |
+
"learning_rate": 3.6115677214700397e-06,
|
2115 |
+
"loss": 0.5596,
|
2116 |
+
"step": 3010
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 2.11,
|
2120 |
+
"grad_norm": 0.4683369095498927,
|
2121 |
+
"learning_rate": 3.5901176977924606e-06,
|
2122 |
+
"loss": 0.5458,
|
2123 |
+
"step": 3020
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 2.12,
|
2127 |
+
"grad_norm": 0.4710288608351933,
|
2128 |
+
"learning_rate": 3.568664286529646e-06,
|
2129 |
+
"loss": 0.5507,
|
2130 |
+
"step": 3030
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 2.12,
|
2134 |
+
"grad_norm": 0.4928542807361932,
|
2135 |
+
"learning_rate": 3.5472082941298433e-06,
|
2136 |
+
"loss": 0.5665,
|
2137 |
+
"step": 3040
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 2.13,
|
2141 |
+
"grad_norm": 0.4972921543225756,
|
2142 |
+
"learning_rate": 3.5257505271383217e-06,
|
2143 |
+
"loss": 0.5586,
|
2144 |
+
"step": 3050
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 2.14,
|
2148 |
+
"grad_norm": 0.4855107426051562,
|
2149 |
+
"learning_rate": 3.504291792167063e-06,
|
2150 |
+
"loss": 0.5615,
|
2151 |
+
"step": 3060
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 2.15,
|
2155 |
+
"grad_norm": 0.4623236179613674,
|
2156 |
+
"learning_rate": 3.4828328958644326e-06,
|
2157 |
+
"loss": 0.5638,
|
2158 |
+
"step": 3070
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 2.15,
|
2162 |
+
"grad_norm": 0.46028741167647896,
|
2163 |
+
"learning_rate": 3.4613746448848622e-06,
|
2164 |
+
"loss": 0.5464,
|
2165 |
+
"step": 3080
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 2.16,
|
2169 |
+
"grad_norm": 0.46156508300115645,
|
2170 |
+
"learning_rate": 3.439917845858524e-06,
|
2171 |
+
"loss": 0.567,
|
2172 |
+
"step": 3090
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 2.17,
|
2176 |
+
"grad_norm": 0.5669489602625127,
|
2177 |
+
"learning_rate": 3.418463305361013e-06,
|
2178 |
+
"loss": 0.5524,
|
2179 |
+
"step": 3100
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 2.17,
|
2183 |
+
"grad_norm": 0.49099941076825016,
|
2184 |
+
"learning_rate": 3.3970118298830207e-06,
|
2185 |
+
"loss": 0.5591,
|
2186 |
+
"step": 3110
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 2.18,
|
2190 |
+
"grad_norm": 0.5207064606888653,
|
2191 |
+
"learning_rate": 3.3755642258000265e-06,
|
2192 |
+
"loss": 0.5538,
|
2193 |
+
"step": 3120
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 2.19,
|
2197 |
+
"grad_norm": 0.4830219809120518,
|
2198 |
+
"learning_rate": 3.3541212993419773e-06,
|
2199 |
+
"loss": 0.5475,
|
2200 |
+
"step": 3130
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 2.19,
|
2204 |
+
"grad_norm": 0.4801836621711601,
|
2205 |
+
"learning_rate": 3.3326838565629895e-06,
|
2206 |
+
"loss": 0.5413,
|
2207 |
+
"step": 3140
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 2.2,
|
2211 |
+
"grad_norm": 0.47387958333244534,
|
2212 |
+
"learning_rate": 3.31125270331104e-06,
|
2213 |
+
"loss": 0.5537,
|
2214 |
+
"step": 3150
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 2.21,
|
2218 |
+
"grad_norm": 0.5090490511350312,
|
2219 |
+
"learning_rate": 3.289828645197681e-06,
|
2220 |
+
"loss": 0.5567,
|
2221 |
+
"step": 3160
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 2.22,
|
2225 |
+
"grad_norm": 0.5286353188714713,
|
2226 |
+
"learning_rate": 3.2684124875677518e-06,
|
2227 |
+
"loss": 0.5589,
|
2228 |
+
"step": 3170
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 2.22,
|
2232 |
+
"grad_norm": 0.4927074981163475,
|
2233 |
+
"learning_rate": 3.247005035469109e-06,
|
2234 |
+
"loss": 0.5697,
|
2235 |
+
"step": 3180
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 2.23,
|
2239 |
+
"grad_norm": 0.47340856305327644,
|
2240 |
+
"learning_rate": 3.2256070936223603e-06,
|
2241 |
+
"loss": 0.5687,
|
2242 |
+
"step": 3190
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 2.24,
|
2246 |
+
"grad_norm": 0.5115028667136483,
|
2247 |
+
"learning_rate": 3.2042194663906193e-06,
|
2248 |
+
"loss": 0.5625,
|
2249 |
+
"step": 3200
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 2.24,
|
2253 |
+
"grad_norm": 0.4723602653535651,
|
2254 |
+
"learning_rate": 3.182842957749263e-06,
|
2255 |
+
"loss": 0.5633,
|
2256 |
+
"step": 3210
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 2.25,
|
2260 |
+
"grad_norm": 0.4679538952450783,
|
2261 |
+
"learning_rate": 3.1614783712557156e-06,
|
2262 |
+
"loss": 0.5572,
|
2263 |
+
"step": 3220
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 2.26,
|
2267 |
+
"grad_norm": 0.48051919166640805,
|
2268 |
+
"learning_rate": 3.1401265100192383e-06,
|
2269 |
+
"loss": 0.5648,
|
2270 |
+
"step": 3230
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 2.27,
|
2274 |
+
"grad_norm": 0.4594423765819446,
|
2275 |
+
"learning_rate": 3.1187881766707425e-06,
|
2276 |
+
"loss": 0.5595,
|
2277 |
+
"step": 3240
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 2.27,
|
2281 |
+
"grad_norm": 0.49220125939314296,
|
2282 |
+
"learning_rate": 3.0974641733326154e-06,
|
2283 |
+
"loss": 0.5479,
|
2284 |
+
"step": 3250
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 2.28,
|
2288 |
+
"grad_norm": 0.4944265110257382,
|
2289 |
+
"learning_rate": 3.0761553015885717e-06,
|
2290 |
+
"loss": 0.5502,
|
2291 |
+
"step": 3260
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 2.29,
|
2295 |
+
"grad_norm": 0.495744161270211,
|
2296 |
+
"learning_rate": 3.0548623624535165e-06,
|
2297 |
+
"loss": 0.5629,
|
2298 |
+
"step": 3270
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 2.29,
|
2302 |
+
"grad_norm": 0.478561888744776,
|
2303 |
+
"learning_rate": 3.0335861563434403e-06,
|
2304 |
+
"loss": 0.5597,
|
2305 |
+
"step": 3280
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 2.3,
|
2309 |
+
"grad_norm": 0.4946624980435279,
|
2310 |
+
"learning_rate": 3.012327483045325e-06,
|
2311 |
+
"loss": 0.556,
|
2312 |
+
"step": 3290
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 2.31,
|
2316 |
+
"grad_norm": 0.4913013156645444,
|
2317 |
+
"learning_rate": 2.9910871416870855e-06,
|
2318 |
+
"loss": 0.5638,
|
2319 |
+
"step": 3300
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 2.32,
|
2323 |
+
"grad_norm": 0.46629667333688474,
|
2324 |
+
"learning_rate": 2.9698659307075224e-06,
|
2325 |
+
"loss": 0.5508,
|
2326 |
+
"step": 3310
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 2.32,
|
2330 |
+
"grad_norm": 0.47577400823898375,
|
2331 |
+
"learning_rate": 2.948664647826318e-06,
|
2332 |
+
"loss": 0.5518,
|
2333 |
+
"step": 3320
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 2.33,
|
2337 |
+
"grad_norm": 0.48528006049817207,
|
2338 |
+
"learning_rate": 2.9274840900140375e-06,
|
2339 |
+
"loss": 0.5582,
|
2340 |
+
"step": 3330
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 2.34,
|
2344 |
+
"grad_norm": 0.5499143301618472,
|
2345 |
+
"learning_rate": 2.906325053462181e-06,
|
2346 |
+
"loss": 0.548,
|
2347 |
+
"step": 3340
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 2.34,
|
2351 |
+
"grad_norm": 0.4772816560553211,
|
2352 |
+
"learning_rate": 2.8851883335532496e-06,
|
2353 |
+
"loss": 0.5523,
|
2354 |
+
"step": 3350
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 2.35,
|
2358 |
+
"grad_norm": 0.49887071761697505,
|
2359 |
+
"learning_rate": 2.8640747248308445e-06,
|
2360 |
+
"loss": 0.5544,
|
2361 |
+
"step": 3360
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 2.36,
|
2365 |
+
"grad_norm": 0.4853842631362592,
|
2366 |
+
"learning_rate": 2.8429850209698053e-06,
|
2367 |
+
"loss": 0.5558,
|
2368 |
+
"step": 3370
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 2.37,
|
2372 |
+
"grad_norm": 0.45895465861964546,
|
2373 |
+
"learning_rate": 2.8219200147463677e-06,
|
2374 |
+
"loss": 0.5598,
|
2375 |
+
"step": 3380
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 2.37,
|
2379 |
+
"grad_norm": 0.4662802877247775,
|
2380 |
+
"learning_rate": 2.8008804980083695e-06,
|
2381 |
+
"loss": 0.5551,
|
2382 |
+
"step": 3390
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 2.38,
|
2386 |
+
"grad_norm": 0.4881083174435456,
|
2387 |
+
"learning_rate": 2.7798672616454785e-06,
|
2388 |
+
"loss": 0.5511,
|
2389 |
+
"step": 3400
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 2.39,
|
2393 |
+
"grad_norm": 0.5016617932642891,
|
2394 |
+
"learning_rate": 2.75888109555947e-06,
|
2395 |
+
"loss": 0.5438,
|
2396 |
+
"step": 3410
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 2.39,
|
2400 |
+
"grad_norm": 0.4831166076149674,
|
2401 |
+
"learning_rate": 2.7379227886345244e-06,
|
2402 |
+
"loss": 0.5598,
|
2403 |
+
"step": 3420
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 2.4,
|
2407 |
+
"grad_norm": 0.4953933886035155,
|
2408 |
+
"learning_rate": 2.716993128707581e-06,
|
2409 |
+
"loss": 0.5609,
|
2410 |
+
"step": 3430
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 2.41,
|
2414 |
+
"grad_norm": 0.503170266490847,
|
2415 |
+
"learning_rate": 2.696092902538716e-06,
|
2416 |
+
"loss": 0.5488,
|
2417 |
+
"step": 3440
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 2.42,
|
2421 |
+
"grad_norm": 0.5098380667106547,
|
2422 |
+
"learning_rate": 2.675222895781574e-06,
|
2423 |
+
"loss": 0.5539,
|
2424 |
+
"step": 3450
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 2.42,
|
2428 |
+
"grad_norm": 0.49948084086860606,
|
2429 |
+
"learning_rate": 2.6543838929538285e-06,
|
2430 |
+
"loss": 0.5581,
|
2431 |
+
"step": 3460
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 2.43,
|
2435 |
+
"grad_norm": 0.4872613273522286,
|
2436 |
+
"learning_rate": 2.6335766774076965e-06,
|
2437 |
+
"loss": 0.5562,
|
2438 |
+
"step": 3470
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 2.44,
|
2442 |
+
"grad_norm": 0.47926716145131487,
|
2443 |
+
"learning_rate": 2.6128020313004875e-06,
|
2444 |
+
"loss": 0.5561,
|
2445 |
+
"step": 3480
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 2.44,
|
2449 |
+
"grad_norm": 0.49339314189894584,
|
2450 |
+
"learning_rate": 2.592060735565206e-06,
|
2451 |
+
"loss": 0.5633,
|
2452 |
+
"step": 3490
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 2.45,
|
2456 |
+
"grad_norm": 0.4888816777932096,
|
2457 |
+
"learning_rate": 2.5713535698811926e-06,
|
2458 |
+
"loss": 0.5623,
|
2459 |
+
"step": 3500
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 2.46,
|
2463 |
+
"grad_norm": 0.47873225411797143,
|
2464 |
+
"learning_rate": 2.550681312644815e-06,
|
2465 |
+
"loss": 0.5629,
|
2466 |
+
"step": 3510
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 2.47,
|
2470 |
+
"grad_norm": 0.4985498589688127,
|
2471 |
+
"learning_rate": 2.5300447409402104e-06,
|
2472 |
+
"loss": 0.5517,
|
2473 |
+
"step": 3520
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 2.47,
|
2477 |
+
"grad_norm": 0.4699404709889953,
|
2478 |
+
"learning_rate": 2.509444630510071e-06,
|
2479 |
+
"loss": 0.5542,
|
2480 |
+
"step": 3530
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 2.48,
|
2484 |
+
"grad_norm": 0.5471742855253533,
|
2485 |
+
"learning_rate": 2.4888817557264883e-06,
|
2486 |
+
"loss": 0.5573,
|
2487 |
+
"step": 3540
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 2.49,
|
2491 |
+
"grad_norm": 0.4890601716460387,
|
2492 |
+
"learning_rate": 2.468356889561835e-06,
|
2493 |
+
"loss": 0.5496,
|
2494 |
+
"step": 3550
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 2.49,
|
2498 |
+
"grad_norm": 0.4884550896007432,
|
2499 |
+
"learning_rate": 2.4478708035597206e-06,
|
2500 |
+
"loss": 0.5517,
|
2501 |
+
"step": 3560
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 2.5,
|
2505 |
+
"grad_norm": 0.53082092791935,
|
2506 |
+
"learning_rate": 2.427424267805977e-06,
|
2507 |
+
"loss": 0.5643,
|
2508 |
+
"step": 3570
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 2.51,
|
2512 |
+
"grad_norm": 0.4588900957688972,
|
2513 |
+
"learning_rate": 2.407018050899719e-06,
|
2514 |
+
"loss": 0.5588,
|
2515 |
+
"step": 3580
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 2.51,
|
2519 |
+
"grad_norm": 0.4930240761419014,
|
2520 |
+
"learning_rate": 2.3866529199244454e-06,
|
2521 |
+
"loss": 0.5534,
|
2522 |
+
"step": 3590
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 2.52,
|
2526 |
+
"grad_norm": 0.4995410840918172,
|
2527 |
+
"learning_rate": 2.36632964041921e-06,
|
2528 |
+
"loss": 0.5526,
|
2529 |
+
"step": 3600
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 2.53,
|
2533 |
+
"grad_norm": 0.4889682103736911,
|
2534 |
+
"learning_rate": 2.3460489763498393e-06,
|
2535 |
+
"loss": 0.5575,
|
2536 |
+
"step": 3610
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 2.54,
|
2540 |
+
"grad_norm": 0.47254332660748083,
|
2541 |
+
"learning_rate": 2.3258116900802188e-06,
|
2542 |
+
"loss": 0.5641,
|
2543 |
+
"step": 3620
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 2.54,
|
2547 |
+
"grad_norm": 0.5271806756431864,
|
2548 |
+
"learning_rate": 2.3056185423436304e-06,
|
2549 |
+
"loss": 0.5515,
|
2550 |
+
"step": 3630
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 2.55,
|
2554 |
+
"grad_norm": 0.5014716634327129,
|
2555 |
+
"learning_rate": 2.2854702922141627e-06,
|
2556 |
+
"loss": 0.5578,
|
2557 |
+
"step": 3640
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 2.56,
|
2561 |
+
"grad_norm": 0.48930981901485066,
|
2562 |
+
"learning_rate": 2.265367697078168e-06,
|
2563 |
+
"loss": 0.5648,
|
2564 |
+
"step": 3650
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 2.56,
|
2568 |
+
"grad_norm": 0.4822043988267899,
|
2569 |
+
"learning_rate": 2.245311512605801e-06,
|
2570 |
+
"loss": 0.5554,
|
2571 |
+
"step": 3660
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 2.57,
|
2575 |
+
"grad_norm": 0.4978119631671631,
|
2576 |
+
"learning_rate": 2.2253024927226053e-06,
|
2577 |
+
"loss": 0.5586,
|
2578 |
+
"step": 3670
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 2.58,
|
2582 |
+
"grad_norm": 0.49756480432664524,
|
2583 |
+
"learning_rate": 2.2053413895811764e-06,
|
2584 |
+
"loss": 0.5578,
|
2585 |
+
"step": 3680
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 2.59,
|
2589 |
+
"grad_norm": 0.4671920108876918,
|
2590 |
+
"learning_rate": 2.1854289535328864e-06,
|
2591 |
+
"loss": 0.5557,
|
2592 |
+
"step": 3690
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 2.59,
|
2596 |
+
"grad_norm": 0.513655855548841,
|
2597 |
+
"learning_rate": 2.165565933099682e-06,
|
2598 |
+
"loss": 0.5589,
|
2599 |
+
"step": 3700
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 2.6,
|
2603 |
+
"grad_norm": 0.46274876339767745,
|
2604 |
+
"learning_rate": 2.1457530749459373e-06,
|
2605 |
+
"loss": 0.5588,
|
2606 |
+
"step": 3710
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 2.61,
|
2610 |
+
"grad_norm": 0.48340392958868733,
|
2611 |
+
"learning_rate": 2.1259911238503988e-06,
|
2612 |
+
"loss": 0.5481,
|
2613 |
+
"step": 3720
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 2.61,
|
2617 |
+
"grad_norm": 0.5024001177410511,
|
2618 |
+
"learning_rate": 2.1062808226781767e-06,
|
2619 |
+
"loss": 0.5604,
|
2620 |
+
"step": 3730
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 2.62,
|
2624 |
+
"grad_norm": 0.4794062865649958,
|
2625 |
+
"learning_rate": 2.0866229123528305e-06,
|
2626 |
+
"loss": 0.552,
|
2627 |
+
"step": 3740
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 2.63,
|
2631 |
+
"grad_norm": 0.49502474291815657,
|
2632 |
+
"learning_rate": 2.0670181318285076e-06,
|
2633 |
+
"loss": 0.5526,
|
2634 |
+
"step": 3750
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 2.64,
|
2638 |
+
"grad_norm": 0.4912138589836612,
|
2639 |
+
"learning_rate": 2.0474672180621754e-06,
|
2640 |
+
"loss": 0.5433,
|
2641 |
+
"step": 3760
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 2.64,
|
2645 |
+
"grad_norm": 0.46287983551015915,
|
2646 |
+
"learning_rate": 2.027970905985908e-06,
|
2647 |
+
"loss": 0.5607,
|
2648 |
+
"step": 3770
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 2.65,
|
2652 |
+
"grad_norm": 0.4818908530273005,
|
2653 |
+
"learning_rate": 2.008529928479269e-06,
|
2654 |
+
"loss": 0.5552,
|
2655 |
+
"step": 3780
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 2.66,
|
2659 |
+
"grad_norm": 0.49475825963312386,
|
2660 |
+
"learning_rate": 1.9891450163417574e-06,
|
2661 |
+
"loss": 0.5473,
|
2662 |
+
"step": 3790
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 2.66,
|
2666 |
+
"grad_norm": 0.5090335613659759,
|
2667 |
+
"learning_rate": 1.9698168982653334e-06,
|
2668 |
+
"loss": 0.5469,
|
2669 |
+
"step": 3800
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 2.67,
|
2673 |
+
"grad_norm": 0.48712846229296525,
|
2674 |
+
"learning_rate": 1.950546300807037e-06,
|
2675 |
+
"loss": 0.5526,
|
2676 |
+
"step": 3810
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 2.68,
|
2680 |
+
"grad_norm": 0.5087151308068611,
|
2681 |
+
"learning_rate": 1.931333948361664e-06,
|
2682 |
+
"loss": 0.563,
|
2683 |
+
"step": 3820
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 2.69,
|
2687 |
+
"grad_norm": 0.4770122954574883,
|
2688 |
+
"learning_rate": 1.9121805631345406e-06,
|
2689 |
+
"loss": 0.5588,
|
2690 |
+
"step": 3830
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 2.69,
|
2694 |
+
"grad_norm": 0.49875337542296333,
|
2695 |
+
"learning_rate": 1.8930868651143776e-06,
|
2696 |
+
"loss": 0.5556,
|
2697 |
+
"step": 3840
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 2.7,
|
2701 |
+
"grad_norm": 0.46661280379905284,
|
2702 |
+
"learning_rate": 1.8740535720462034e-06,
|
2703 |
+
"loss": 0.5518,
|
2704 |
+
"step": 3850
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 2.71,
|
2708 |
+
"grad_norm": 0.49444595207088565,
|
2709 |
+
"learning_rate": 1.8550813994043814e-06,
|
2710 |
+
"loss": 0.5679,
|
2711 |
+
"step": 3860
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 2.71,
|
2715 |
+
"grad_norm": 0.48381227476419236,
|
2716 |
+
"learning_rate": 1.8361710603657162e-06,
|
2717 |
+
"loss": 0.5572,
|
2718 |
+
"step": 3870
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 2.72,
|
2722 |
+
"grad_norm": 0.5055312948711096,
|
2723 |
+
"learning_rate": 1.8173232657826508e-06,
|
2724 |
+
"loss": 0.5538,
|
2725 |
+
"step": 3880
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 2.73,
|
2729 |
+
"grad_norm": 0.4686625212413926,
|
2730 |
+
"learning_rate": 1.7985387241565343e-06,
|
2731 |
+
"loss": 0.559,
|
2732 |
+
"step": 3890
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 2.74,
|
2736 |
+
"grad_norm": 0.4804255341689684,
|
2737 |
+
"learning_rate": 1.7798181416109966e-06,
|
2738 |
+
"loss": 0.544,
|
2739 |
+
"step": 3900
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 2.74,
|
2743 |
+
"grad_norm": 0.5090131219052505,
|
2744 |
+
"learning_rate": 1.7611622218654e-06,
|
2745 |
+
"loss": 0.5565,
|
2746 |
+
"step": 3910
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 2.75,
|
2750 |
+
"grad_norm": 0.4823380469403731,
|
2751 |
+
"learning_rate": 1.7425716662083936e-06,
|
2752 |
+
"loss": 0.5586,
|
2753 |
+
"step": 3920
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 2.76,
|
2757 |
+
"grad_norm": 0.5039478306212927,
|
2758 |
+
"learning_rate": 1.7240471734715416e-06,
|
2759 |
+
"loss": 0.5582,
|
2760 |
+
"step": 3930
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 2.76,
|
2764 |
+
"grad_norm": 0.48106143586192984,
|
2765 |
+
"learning_rate": 1.7055894400030597e-06,
|
2766 |
+
"loss": 0.5527,
|
2767 |
+
"step": 3940
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 2.77,
|
2771 |
+
"grad_norm": 0.4948095621947108,
|
2772 |
+
"learning_rate": 1.6871991596416367e-06,
|
2773 |
+
"loss": 0.5534,
|
2774 |
+
"step": 3950
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 2.78,
|
2778 |
+
"grad_norm": 0.47985601211032985,
|
2779 |
+
"learning_rate": 1.668877023690356e-06,
|
2780 |
+
"loss": 0.5514,
|
2781 |
+
"step": 3960
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 2.79,
|
2785 |
+
"grad_norm": 0.5044751224020304,
|
2786 |
+
"learning_rate": 1.6506237208907045e-06,
|
2787 |
+
"loss": 0.5541,
|
2788 |
+
"step": 3970
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 2.79,
|
2792 |
+
"grad_norm": 0.5080452899508979,
|
2793 |
+
"learning_rate": 1.6324399373966833e-06,
|
2794 |
+
"loss": 0.5506,
|
2795 |
+
"step": 3980
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 2.8,
|
2799 |
+
"grad_norm": 0.4931986436565961,
|
2800 |
+
"learning_rate": 1.6143263567490192e-06,
|
2801 |
+
"loss": 0.5736,
|
2802 |
+
"step": 3990
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 2.81,
|
2806 |
+
"grad_norm": 0.4684816221900875,
|
2807 |
+
"learning_rate": 1.596283659849464e-06,
|
2808 |
+
"loss": 0.556,
|
2809 |
+
"step": 4000
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 2.81,
|
2813 |
+
"grad_norm": 0.4785014812413059,
|
2814 |
+
"learning_rate": 1.5783125249352016e-06,
|
2815 |
+
"loss": 0.5579,
|
2816 |
+
"step": 4010
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 2.82,
|
2820 |
+
"grad_norm": 0.5116019647376474,
|
2821 |
+
"learning_rate": 1.5604136275533513e-06,
|
2822 |
+
"loss": 0.5552,
|
2823 |
+
"step": 4020
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 2.83,
|
2827 |
+
"grad_norm": 0.5395436792240803,
|
2828 |
+
"learning_rate": 1.5425876405355793e-06,
|
2829 |
+
"loss": 0.5384,
|
2830 |
+
"step": 4030
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 2.83,
|
2834 |
+
"grad_norm": 0.4900436595350879,
|
2835 |
+
"learning_rate": 1.5248352339727968e-06,
|
2836 |
+
"loss": 0.5622,
|
2837 |
+
"step": 4040
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 2.84,
|
2841 |
+
"grad_norm": 0.47513280378884526,
|
2842 |
+
"learning_rate": 1.5071570751899785e-06,
|
2843 |
+
"loss": 0.5636,
|
2844 |
+
"step": 4050
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 2.85,
|
2848 |
+
"grad_norm": 0.4839906292088417,
|
2849 |
+
"learning_rate": 1.4895538287210727e-06,
|
2850 |
+
"loss": 0.5527,
|
2851 |
+
"step": 4060
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 2.86,
|
2855 |
+
"grad_norm": 0.5376958097507211,
|
2856 |
+
"learning_rate": 1.4720261562840272e-06,
|
2857 |
+
"loss": 0.5635,
|
2858 |
+
"step": 4070
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 2.86,
|
2862 |
+
"grad_norm": 0.48771290149288943,
|
2863 |
+
"learning_rate": 1.4545747167559066e-06,
|
2864 |
+
"loss": 0.564,
|
2865 |
+
"step": 4080
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 2.87,
|
2869 |
+
"grad_norm": 0.4854524808894032,
|
2870 |
+
"learning_rate": 1.4372001661481314e-06,
|
2871 |
+
"loss": 0.5598,
|
2872 |
+
"step": 4090
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"epoch": 2.88,
|
2876 |
+
"grad_norm": 0.4700143505212195,
|
2877 |
+
"learning_rate": 1.4199031575818126e-06,
|
2878 |
+
"loss": 0.5375,
|
2879 |
+
"step": 4100
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 2.88,
|
2883 |
+
"grad_norm": 0.4915439052479703,
|
2884 |
+
"learning_rate": 1.4026843412632083e-06,
|
2885 |
+
"loss": 0.5548,
|
2886 |
+
"step": 4110
|
2887 |
+
},
|
2888 |
+
{
|
2889 |
+
"epoch": 2.89,
|
2890 |
+
"grad_norm": 0.4869720592283153,
|
2891 |
+
"learning_rate": 1.385544364459273e-06,
|
2892 |
+
"loss": 0.5571,
|
2893 |
+
"step": 4120
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 2.9,
|
2897 |
+
"grad_norm": 0.4716126280570366,
|
2898 |
+
"learning_rate": 1.3684838714733317e-06,
|
2899 |
+
"loss": 0.5516,
|
2900 |
+
"step": 4130
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 2.91,
|
2904 |
+
"grad_norm": 0.4965381533290548,
|
2905 |
+
"learning_rate": 1.3515035036208578e-06,
|
2906 |
+
"loss": 0.5578,
|
2907 |
+
"step": 4140
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 2.91,
|
2911 |
+
"grad_norm": 0.49674828915458996,
|
2912 |
+
"learning_rate": 1.3346038992053705e-06,
|
2913 |
+
"loss": 0.5498,
|
2914 |
+
"step": 4150
|
2915 |
+
},
|
2916 |
+
{
|
2917 |
+
"epoch": 2.92,
|
2918 |
+
"grad_norm": 0.47680857026122736,
|
2919 |
+
"learning_rate": 1.3177856934944328e-06,
|
2920 |
+
"loss": 0.5531,
|
2921 |
+
"step": 4160
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 2.93,
|
2925 |
+
"grad_norm": 0.4870948629881832,
|
2926 |
+
"learning_rate": 1.3010495186957768e-06,
|
2927 |
+
"loss": 0.552,
|
2928 |
+
"step": 4170
|
2929 |
+
},
|
2930 |
+
{
|
2931 |
+
"epoch": 2.93,
|
2932 |
+
"grad_norm": 0.483089196852953,
|
2933 |
+
"learning_rate": 1.2843960039335355e-06,
|
2934 |
+
"loss": 0.5564,
|
2935 |
+
"step": 4180
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"epoch": 2.94,
|
2939 |
+
"grad_norm": 0.5140997811965615,
|
2940 |
+
"learning_rate": 1.2678257752245992e-06,
|
2941 |
+
"loss": 0.5504,
|
2942 |
+
"step": 4190
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 2.95,
|
2946 |
+
"grad_norm": 0.4779902409617231,
|
2947 |
+
"learning_rate": 1.2513394554550753e-06,
|
2948 |
+
"loss": 0.5478,
|
2949 |
+
"step": 4200
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 2.96,
|
2953 |
+
"grad_norm": 0.47680861915825756,
|
2954 |
+
"learning_rate": 1.2349376643568792e-06,
|
2955 |
+
"loss": 0.5555,
|
2956 |
+
"step": 4210
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 2.96,
|
2960 |
+
"grad_norm": 0.47618772244534097,
|
2961 |
+
"learning_rate": 1.218621018484434e-06,
|
2962 |
+
"loss": 0.5509,
|
2963 |
+
"step": 4220
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 2.97,
|
2967 |
+
"grad_norm": 0.46991117646305874,
|
2968 |
+
"learning_rate": 1.202390131191501e-06,
|
2969 |
+
"loss": 0.5572,
|
2970 |
+
"step": 4230
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 2.98,
|
2974 |
+
"grad_norm": 0.48145576248836425,
|
2975 |
+
"learning_rate": 1.1862456126081136e-06,
|
2976 |
+
"loss": 0.562,
|
2977 |
+
"step": 4240
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 2.98,
|
2981 |
+
"grad_norm": 0.49862994419451123,
|
2982 |
+
"learning_rate": 1.170188069617649e-06,
|
2983 |
+
"loss": 0.5574,
|
2984 |
+
"step": 4250
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 2.99,
|
2988 |
+
"grad_norm": 0.5025682535998525,
|
2989 |
+
"learning_rate": 1.1542181058340122e-06,
|
2990 |
+
"loss": 0.5569,
|
2991 |
+
"step": 4260
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 3.0,
|
2995 |
+
"grad_norm": 0.47850092658350835,
|
2996 |
+
"learning_rate": 1.1383363215789488e-06,
|
2997 |
+
"loss": 0.5543,
|
2998 |
+
"step": 4270
|
2999 |
+
},
|
3000 |
+
{
|
3001 |
+
"epoch": 3.01,
|
3002 |
+
"grad_norm": 0.5044422425999335,
|
3003 |
+
"learning_rate": 1.1225433138594741e-06,
|
3004 |
+
"loss": 0.5599,
|
3005 |
+
"step": 4280
|
3006 |
+
},
|
3007 |
+
{
|
3008 |
+
"epoch": 3.01,
|
3009 |
+
"grad_norm": 0.47419325850109234,
|
3010 |
+
"learning_rate": 1.1068396763454339e-06,
|
3011 |
+
"loss": 0.5586,
|
3012 |
+
"step": 4290
|
3013 |
+
},
|
3014 |
+
{
|
3015 |
+
"epoch": 3.0,
|
3016 |
+
"grad_norm": 0.560597143802205,
|
3017 |
+
"learning_rate": 1.0912259993471857e-06,
|
3018 |
+
"loss": 0.5524,
|
3019 |
+
"step": 4300
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"epoch": 3.01,
|
3023 |
+
"grad_norm": 0.5148468793364267,
|
3024 |
+
"learning_rate": 1.0757028697934152e-06,
|
3025 |
+
"loss": 0.5084,
|
3026 |
+
"step": 4310
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 3.01,
|
3030 |
+
"grad_norm": 0.5017714203601242,
|
3031 |
+
"learning_rate": 1.060270871209064e-06,
|
3032 |
+
"loss": 0.5156,
|
3033 |
+
"step": 4320
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 3.02,
|
3037 |
+
"grad_norm": 0.49357251631602217,
|
3038 |
+
"learning_rate": 1.0449305836934003e-06,
|
3039 |
+
"loss": 0.5109,
|
3040 |
+
"step": 4330
|
3041 |
+
},
|
3042 |
+
{
|
3043 |
+
"epoch": 3.03,
|
3044 |
+
"grad_norm": 0.4936913138076729,
|
3045 |
+
"learning_rate": 1.02968258389821e-06,
|
3046 |
+
"loss": 0.5158,
|
3047 |
+
"step": 4340
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"epoch": 3.04,
|
3051 |
+
"grad_norm": 0.5049259973539401,
|
3052 |
+
"learning_rate": 1.0145274450061254e-06,
|
3053 |
+
"loss": 0.5217,
|
3054 |
+
"step": 4350
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 3.04,
|
3058 |
+
"grad_norm": 0.517079836314341,
|
3059 |
+
"learning_rate": 9.994657367090686e-07,
|
3060 |
+
"loss": 0.5136,
|
3061 |
+
"step": 4360
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 3.05,
|
3065 |
+
"grad_norm": 0.4837364294449262,
|
3066 |
+
"learning_rate": 9.844980251868449e-07,
|
3067 |
+
"loss": 0.518,
|
3068 |
+
"step": 4370
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 3.06,
|
3072 |
+
"grad_norm": 0.4869343961795407,
|
3073 |
+
"learning_rate": 9.696248730858605e-07,
|
3074 |
+
"loss": 0.5132,
|
3075 |
+
"step": 4380
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 3.06,
|
3079 |
+
"grad_norm": 0.5085658265111329,
|
3080 |
+
"learning_rate": 9.54846839497964e-07,
|
3081 |
+
"loss": 0.5165,
|
3082 |
+
"step": 4390
|
3083 |
+
},
|
3084 |
+
{
|
3085 |
+
"epoch": 3.07,
|
3086 |
+
"grad_norm": 0.47424129042024027,
|
3087 |
+
"learning_rate": 9.401644799394382e-07,
|
3088 |
+
"loss": 0.5215,
|
3089 |
+
"step": 4400
|
3090 |
+
},
|
3091 |
+
{
|
3092 |
+
"epoch": 3.08,
|
3093 |
+
"grad_norm": 0.4991885159298539,
|
3094 |
+
"learning_rate": 9.255783463301111e-07,
|
3095 |
+
"loss": 0.5092,
|
3096 |
+
"step": 4410
|
3097 |
+
},
|
3098 |
+
{
|
3099 |
+
"epoch": 3.09,
|
3100 |
+
"grad_norm": 0.47972707851164975,
|
3101 |
+
"learning_rate": 9.110889869726167e-07,
|
3102 |
+
"loss": 0.5289,
|
3103 |
+
"step": 4420
|
3104 |
+
},
|
3105 |
+
{
|
3106 |
+
"epoch": 3.09,
|
3107 |
+
"grad_norm": 0.48477312158187885,
|
3108 |
+
"learning_rate": 8.966969465317753e-07,
|
3109 |
+
"loss": 0.5373,
|
3110 |
+
"step": 4430
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 3.1,
|
3114 |
+
"grad_norm": 0.5150113149802942,
|
3115 |
+
"learning_rate": 8.824027660141253e-07,
|
3116 |
+
"loss": 0.5144,
|
3117 |
+
"step": 4440
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 3.11,
|
3121 |
+
"grad_norm": 0.5012820847152873,
|
3122 |
+
"learning_rate": 8.682069827475828e-07,
|
3123 |
+
"loss": 0.5232,
|
3124 |
+
"step": 4450
|
3125 |
+
},
|
3126 |
+
{
|
3127 |
+
"epoch": 3.11,
|
3128 |
+
"grad_norm": 0.536197598669663,
|
3129 |
+
"learning_rate": 8.541101303612473e-07,
|
3130 |
+
"loss": 0.5312,
|
3131 |
+
"step": 4460
|
3132 |
+
},
|
3133 |
+
{
|
3134 |
+
"epoch": 3.12,
|
3135 |
+
"grad_norm": 0.47456874746453287,
|
3136 |
+
"learning_rate": 8.401127387653379e-07,
|
3137 |
+
"loss": 0.5021,
|
3138 |
+
"step": 4470
|
3139 |
+
},
|
3140 |
+
{
|
3141 |
+
"epoch": 3.13,
|
3142 |
+
"grad_norm": 0.5022494921077733,
|
3143 |
+
"learning_rate": 8.262153341312734e-07,
|
3144 |
+
"loss": 0.5039,
|
3145 |
+
"step": 4480
|
3146 |
+
},
|
3147 |
+
{
|
3148 |
+
"epoch": 3.14,
|
3149 |
+
"grad_norm": 0.5128622291867768,
|
3150 |
+
"learning_rate": 8.124184388719e-07,
|
3151 |
+
"loss": 0.5189,
|
3152 |
+
"step": 4490
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 3.14,
|
3156 |
+
"grad_norm": 0.49970434341288505,
|
3157 |
+
"learning_rate": 7.987225716218441e-07,
|
3158 |
+
"loss": 0.5266,
|
3159 |
+
"step": 4500
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 3.15,
|
3163 |
+
"grad_norm": 0.4990813361708124,
|
3164 |
+
"learning_rate": 7.851282472180222e-07,
|
3165 |
+
"loss": 0.5189,
|
3166 |
+
"step": 4510
|
3167 |
+
},
|
3168 |
+
{
|
3169 |
+
"epoch": 3.16,
|
3170 |
+
"grad_norm": 0.5361324180050252,
|
3171 |
+
"learning_rate": 7.716359766802858e-07,
|
3172 |
+
"loss": 0.5283,
|
3173 |
+
"step": 4520
|
3174 |
+
},
|
3175 |
+
{
|
3176 |
+
"epoch": 3.16,
|
3177 |
+
"grad_norm": 0.49325303865409753,
|
3178 |
+
"learning_rate": 7.582462671922154e-07,
|
3179 |
+
"loss": 0.5134,
|
3180 |
+
"step": 4530
|
3181 |
+
},
|
3182 |
+
{
|
3183 |
+
"epoch": 3.17,
|
3184 |
+
"grad_norm": 0.5074499214352016,
|
3185 |
+
"learning_rate": 7.449596220820492e-07,
|
3186 |
+
"loss": 0.5219,
|
3187 |
+
"step": 4540
|
3188 |
+
},
|
3189 |
+
{
|
3190 |
+
"epoch": 3.18,
|
3191 |
+
"grad_norm": 0.48687866167974014,
|
3192 |
+
"learning_rate": 7.317765408037668e-07,
|
3193 |
+
"loss": 0.5131,
|
3194 |
+
"step": 4550
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 3.19,
|
3198 |
+
"grad_norm": 0.5209017279406115,
|
3199 |
+
"learning_rate": 7.186975189183119e-07,
|
3200 |
+
"loss": 0.5263,
|
3201 |
+
"step": 4560
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 3.19,
|
3205 |
+
"grad_norm": 0.5017929271897994,
|
3206 |
+
"learning_rate": 7.057230480749689e-07,
|
3207 |
+
"loss": 0.5221,
|
3208 |
+
"step": 4570
|
3209 |
+
},
|
3210 |
+
{
|
3211 |
+
"epoch": 3.2,
|
3212 |
+
"grad_norm": 0.4909543768911595,
|
3213 |
+
"learning_rate": 6.928536159928746e-07,
|
3214 |
+
"loss": 0.5082,
|
3215 |
+
"step": 4580
|
3216 |
+
},
|
3217 |
+
{
|
3218 |
+
"epoch": 3.21,
|
3219 |
+
"grad_norm": 0.5217040631589964,
|
3220 |
+
"learning_rate": 6.800897064426877e-07,
|
3221 |
+
"loss": 0.5136,
|
3222 |
+
"step": 4590
|
3223 |
+
},
|
3224 |
+
{
|
3225 |
+
"epoch": 3.21,
|
3226 |
+
"grad_norm": 0.5007485735211247,
|
3227 |
+
"learning_rate": 6.674317992284038e-07,
|
3228 |
+
"loss": 0.5158,
|
3229 |
+
"step": 4600
|
3230 |
+
},
|
3231 |
+
{
|
3232 |
+
"epoch": 3.22,
|
3233 |
+
"grad_norm": 0.495432605404129,
|
3234 |
+
"learning_rate": 6.548803701693218e-07,
|
3235 |
+
"loss": 0.5191,
|
3236 |
+
"step": 4610
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 3.23,
|
3240 |
+
"grad_norm": 0.5457479536125451,
|
3241 |
+
"learning_rate": 6.424358910821511e-07,
|
3242 |
+
"loss": 0.5144,
|
3243 |
+
"step": 4620
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 3.24,
|
3247 |
+
"grad_norm": 0.5106414076169086,
|
3248 |
+
"learning_rate": 6.300988297632804e-07,
|
3249 |
+
"loss": 0.5288,
|
3250 |
+
"step": 4630
|
3251 |
+
},
|
3252 |
+
{
|
3253 |
+
"epoch": 3.24,
|
3254 |
+
"grad_norm": 0.5211736668510725,
|
3255 |
+
"learning_rate": 6.178696499711915e-07,
|
3256 |
+
"loss": 0.5218,
|
3257 |
+
"step": 4640
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 3.25,
|
3261 |
+
"grad_norm": 0.4891406143758845,
|
3262 |
+
"learning_rate": 6.057488114090288e-07,
|
3263 |
+
"loss": 0.5107,
|
3264 |
+
"step": 4650
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 3.26,
|
3268 |
+
"grad_norm": 0.5178228254981688,
|
3269 |
+
"learning_rate": 5.937367697073139e-07,
|
3270 |
+
"loss": 0.5004,
|
3271 |
+
"step": 4660
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 3.26,
|
3275 |
+
"grad_norm": 0.49831173988741256,
|
3276 |
+
"learning_rate": 5.818339764068217e-07,
|
3277 |
+
"loss": 0.5167,
|
3278 |
+
"step": 4670
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 3.27,
|
3282 |
+
"grad_norm": 0.5445792027132667,
|
3283 |
+
"learning_rate": 5.700408789416051e-07,
|
3284 |
+
"loss": 0.5251,
|
3285 |
+
"step": 4680
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 3.28,
|
3289 |
+
"grad_norm": 0.5412064520692698,
|
3290 |
+
"learning_rate": 5.58357920622179e-07,
|
3291 |
+
"loss": 0.5185,
|
3292 |
+
"step": 4690
|
3293 |
+
},
|
3294 |
+
{
|
3295 |
+
"epoch": 3.28,
|
3296 |
+
"grad_norm": 0.5194173017222409,
|
3297 |
+
"learning_rate": 5.467855406188503e-07,
|
3298 |
+
"loss": 0.5213,
|
3299 |
+
"step": 4700
|
3300 |
+
},
|
3301 |
+
{
|
3302 |
+
"epoch": 3.29,
|
3303 |
+
"grad_norm": 0.530585691377951,
|
3304 |
+
"learning_rate": 5.353241739452134e-07,
|
3305 |
+
"loss": 0.5213,
|
3306 |
+
"step": 4710
|
3307 |
+
},
|
3308 |
+
{
|
3309 |
+
"epoch": 3.3,
|
3310 |
+
"grad_norm": 0.5334266089134705,
|
3311 |
+
"learning_rate": 5.239742514417958e-07,
|
3312 |
+
"loss": 0.5213,
|
3313 |
+
"step": 4720
|
3314 |
+
},
|
3315 |
+
{
|
3316 |
+
"epoch": 3.31,
|
3317 |
+
"grad_norm": 0.5323190599173516,
|
3318 |
+
"learning_rate": 5.127361997598647e-07,
|
3319 |
+
"loss": 0.5173,
|
3320 |
+
"step": 4730
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 3.31,
|
3324 |
+
"grad_norm": 0.4977075988891876,
|
3325 |
+
"learning_rate": 5.016104413453866e-07,
|
3326 |
+
"loss": 0.5163,
|
3327 |
+
"step": 4740
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 3.32,
|
3331 |
+
"grad_norm": 0.5072133518376746,
|
3332 |
+
"learning_rate": 4.905973944231479e-07,
|
3333 |
+
"loss": 0.5147,
|
3334 |
+
"step": 4750
|
3335 |
+
},
|
3336 |
+
{
|
3337 |
+
"epoch": 3.33,
|
3338 |
+
"grad_norm": 0.5089446326634548,
|
3339 |
+
"learning_rate": 4.796974729810328e-07,
|
3340 |
+
"loss": 0.5206,
|
3341 |
+
"step": 4760
|
3342 |
+
},
|
3343 |
+
{
|
3344 |
+
"epoch": 3.33,
|
3345 |
+
"grad_norm": 0.5173579821056443,
|
3346 |
+
"learning_rate": 4.6891108675446453e-07,
|
3347 |
+
"loss": 0.5233,
|
3348 |
+
"step": 4770
|
3349 |
+
},
|
3350 |
+
{
|
3351 |
+
"epoch": 3.34,
|
3352 |
+
"grad_norm": 0.49509093398735665,
|
3353 |
+
"learning_rate": 4.5823864121099967e-07,
|
3354 |
+
"loss": 0.5143,
|
3355 |
+
"step": 4780
|
3356 |
+
},
|
3357 |
+
{
|
3358 |
+
"epoch": 3.35,
|
3359 |
+
"grad_norm": 0.510739525920679,
|
3360 |
+
"learning_rate": 4.476805375350865e-07,
|
3361 |
+
"loss": 0.5204,
|
3362 |
+
"step": 4790
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 3.36,
|
3366 |
+
"grad_norm": 0.5285640385275354,
|
3367 |
+
"learning_rate": 4.372371726129854e-07,
|
3368 |
+
"loss": 0.5226,
|
3369 |
+
"step": 4800
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 3.36,
|
3373 |
+
"grad_norm": 0.49804779846917624,
|
3374 |
+
"learning_rate": 4.269089390178512e-07,
|
3375 |
+
"loss": 0.5257,
|
3376 |
+
"step": 4810
|
3377 |
+
},
|
3378 |
+
{
|
3379 |
+
"epoch": 3.37,
|
3380 |
+
"grad_norm": 0.4960403523798791,
|
3381 |
+
"learning_rate": 4.1669622499497205e-07,
|
3382 |
+
"loss": 0.5224,
|
3383 |
+
"step": 4820
|
3384 |
+
},
|
3385 |
+
{
|
3386 |
+
"epoch": 3.38,
|
3387 |
+
"grad_norm": 0.509776799973484,
|
3388 |
+
"learning_rate": 4.0659941444717833e-07,
|
3389 |
+
"loss": 0.5153,
|
3390 |
+
"step": 4830
|
3391 |
+
},
|
3392 |
+
{
|
3393 |
+
"epoch": 3.38,
|
3394 |
+
"grad_norm": 0.48108044641737857,
|
3395 |
+
"learning_rate": 3.966188869204094e-07,
|
3396 |
+
"loss": 0.5175,
|
3397 |
+
"step": 4840
|
3398 |
+
},
|
3399 |
+
{
|
3400 |
+
"epoch": 3.39,
|
3401 |
+
"grad_norm": 0.5141883943099625,
|
3402 |
+
"learning_rate": 3.8675501758944926e-07,
|
3403 |
+
"loss": 0.5147,
|
3404 |
+
"step": 4850
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 3.4,
|
3408 |
+
"grad_norm": 0.5086149236998669,
|
3409 |
+
"learning_rate": 3.7700817724381983e-07,
|
3410 |
+
"loss": 0.5128,
|
3411 |
+
"step": 4860
|
3412 |
+
},
|
3413 |
+
{
|
3414 |
+
"epoch": 3.41,
|
3415 |
+
"grad_norm": 0.5107670739104685,
|
3416 |
+
"learning_rate": 3.6737873227384263e-07,
|
3417 |
+
"loss": 0.5162,
|
3418 |
+
"step": 4870
|
3419 |
+
},
|
3420 |
+
{
|
3421 |
+
"epoch": 3.41,
|
3422 |
+
"grad_norm": 0.48090817905611477,
|
3423 |
+
"learning_rate": 3.578670446568711e-07,
|
3424 |
+
"loss": 0.5289,
|
3425 |
+
"step": 4880
|
3426 |
+
},
|
3427 |
+
{
|
3428 |
+
"epoch": 3.42,
|
3429 |
+
"grad_norm": 0.5149098967385166,
|
3430 |
+
"learning_rate": 3.484734719436782e-07,
|
3431 |
+
"loss": 0.5224,
|
3432 |
+
"step": 4890
|
3433 |
+
},
|
3434 |
+
{
|
3435 |
+
"epoch": 3.43,
|
3436 |
+
"grad_norm": 0.4967090096149114,
|
3437 |
+
"learning_rate": 3.3919836724501743e-07,
|
3438 |
+
"loss": 0.5064,
|
3439 |
+
"step": 4900
|
3440 |
+
},
|
3441 |
+
{
|
3442 |
+
"epoch": 3.43,
|
3443 |
+
"grad_norm": 0.49198009223776107,
|
3444 |
+
"learning_rate": 3.3004207921835004e-07,
|
3445 |
+
"loss": 0.526,
|
3446 |
+
"step": 4910
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 3.44,
|
3450 |
+
"grad_norm": 0.5260886992405347,
|
3451 |
+
"learning_rate": 3.210049520547388e-07,
|
3452 |
+
"loss": 0.5278,
|
3453 |
+
"step": 4920
|
3454 |
+
},
|
3455 |
+
{
|
3456 |
+
"epoch": 3.45,
|
3457 |
+
"grad_norm": 0.49827609520509064,
|
3458 |
+
"learning_rate": 3.1208732546590843e-07,
|
3459 |
+
"loss": 0.5269,
|
3460 |
+
"step": 4930
|
3461 |
+
},
|
3462 |
+
{
|
3463 |
+
"epoch": 3.46,
|
3464 |
+
"grad_norm": 0.5199185251610714,
|
3465 |
+
"learning_rate": 3.0328953467147543e-07,
|
3466 |
+
"loss": 0.5125,
|
3467 |
+
"step": 4940
|
3468 |
+
},
|
3469 |
+
{
|
3470 |
+
"epoch": 3.46,
|
3471 |
+
"grad_norm": 0.5165139482645277,
|
3472 |
+
"learning_rate": 2.946119103863483e-07,
|
3473 |
+
"loss": 0.5095,
|
3474 |
+
"step": 4950
|
3475 |
+
},
|
3476 |
+
{
|
3477 |
+
"epoch": 3.47,
|
3478 |
+
"grad_norm": 0.48760733590102007,
|
3479 |
+
"learning_rate": 2.86054778808296e-07,
|
3480 |
+
"loss": 0.5262,
|
3481 |
+
"step": 4960
|
3482 |
+
},
|
3483 |
+
{
|
3484 |
+
"epoch": 3.48,
|
3485 |
+
"grad_norm": 0.49481920675979196,
|
3486 |
+
"learning_rate": 2.7761846160568403e-07,
|
3487 |
+
"loss": 0.5209,
|
3488 |
+
"step": 4970
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 3.48,
|
3492 |
+
"grad_norm": 0.5017608349952136,
|
3493 |
+
"learning_rate": 2.69303275905384e-07,
|
3494 |
+
"loss": 0.5137,
|
3495 |
+
"step": 4980
|
3496 |
+
},
|
3497 |
+
{
|
3498 |
+
"epoch": 3.49,
|
3499 |
+
"grad_norm": 0.5222144874040826,
|
3500 |
+
"learning_rate": 2.611095342808526e-07,
|
3501 |
+
"loss": 0.5162,
|
3502 |
+
"step": 4990
|
3503 |
+
},
|
3504 |
+
{
|
3505 |
+
"epoch": 3.5,
|
3506 |
+
"grad_norm": 0.4928255848647095,
|
3507 |
+
"learning_rate": 2.530375447403815e-07,
|
3508 |
+
"loss": 0.5176,
|
3509 |
+
"step": 5000
|
3510 |
+
},
|
3511 |
+
{
|
3512 |
+
"epoch": 3.51,
|
3513 |
+
"grad_norm": 0.530457616289496,
|
3514 |
+
"learning_rate": 2.4508761071551906e-07,
|
3515 |
+
"loss": 0.5181,
|
3516 |
+
"step": 5010
|
3517 |
+
},
|
3518 |
+
{
|
3519 |
+
"epoch": 3.51,
|
3520 |
+
"grad_norm": 0.5147706319208548,
|
3521 |
+
"learning_rate": 2.3726003104966393e-07,
|
3522 |
+
"loss": 0.5095,
|
3523 |
+
"step": 5020
|
3524 |
+
},
|
3525 |
+
{
|
3526 |
+
"epoch": 3.52,
|
3527 |
+
"grad_norm": 0.523763253857449,
|
3528 |
+
"learning_rate": 2.2955509998683214e-07,
|
3529 |
+
"loss": 0.5108,
|
3530 |
+
"step": 5030
|
3531 |
+
},
|
3532 |
+
{
|
3533 |
+
"epoch": 3.53,
|
3534 |
+
"grad_norm": 0.5323084690421006,
|
3535 |
+
"learning_rate": 2.2197310716059603e-07,
|
3536 |
+
"loss": 0.511,
|
3537 |
+
"step": 5040
|
3538 |
+
},
|
3539 |
+
{
|
3540 |
+
"epoch": 3.53,
|
3541 |
+
"grad_norm": 0.5088461348117514,
|
3542 |
+
"learning_rate": 2.1451433758319543e-07,
|
3543 |
+
"loss": 0.5265,
|
3544 |
+
"step": 5050
|
3545 |
+
},
|
3546 |
+
{
|
3547 |
+
"epoch": 3.54,
|
3548 |
+
"grad_norm": 0.5478220673331649,
|
3549 |
+
"learning_rate": 2.0717907163482507e-07,
|
3550 |
+
"loss": 0.5112,
|
3551 |
+
"step": 5060
|
3552 |
+
},
|
3553 |
+
{
|
3554 |
+
"epoch": 3.55,
|
3555 |
+
"grad_norm": 0.5414027895276027,
|
3556 |
+
"learning_rate": 1.9996758505309593e-07,
|
3557 |
+
"loss": 0.5231,
|
3558 |
+
"step": 5070
|
3559 |
+
},
|
3560 |
+
{
|
3561 |
+
"epoch": 3.56,
|
3562 |
+
"grad_norm": 0.4983898932091525,
|
3563 |
+
"learning_rate": 1.9288014892266753e-07,
|
3564 |
+
"loss": 0.5105,
|
3565 |
+
"step": 5080
|
3566 |
+
},
|
3567 |
+
{
|
3568 |
+
"epoch": 3.56,
|
3569 |
+
"grad_norm": 0.5093531347734784,
|
3570 |
+
"learning_rate": 1.8591702966505952e-07,
|
3571 |
+
"loss": 0.5127,
|
3572 |
+
"step": 5090
|
3573 |
+
},
|
3574 |
+
{
|
3575 |
+
"epoch": 3.57,
|
3576 |
+
"grad_norm": 0.677948629367298,
|
3577 |
+
"learning_rate": 1.790784890286352e-07,
|
3578 |
+
"loss": 0.5219,
|
3579 |
+
"step": 5100
|
3580 |
+
},
|
3581 |
+
{
|
3582 |
+
"epoch": 3.58,
|
3583 |
+
"grad_norm": 0.5010683504531009,
|
3584 |
+
"learning_rate": 1.7236478407876555e-07,
|
3585 |
+
"loss": 0.5054,
|
3586 |
+
"step": 5110
|
3587 |
+
},
|
3588 |
+
{
|
3589 |
+
"epoch": 3.58,
|
3590 |
+
"grad_norm": 0.5179768835662841,
|
3591 |
+
"learning_rate": 1.6577616718816123e-07,
|
3592 |
+
"loss": 0.5251,
|
3593 |
+
"step": 5120
|
3594 |
+
},
|
3595 |
+
{
|
3596 |
+
"epoch": 3.59,
|
3597 |
+
"grad_norm": 0.5087954420227027,
|
3598 |
+
"learning_rate": 1.5931288602738958e-07,
|
3599 |
+
"loss": 0.5137,
|
3600 |
+
"step": 5130
|
3601 |
+
},
|
3602 |
+
{
|
3603 |
+
"epoch": 3.6,
|
3604 |
+
"grad_norm": 0.5083448366233918,
|
3605 |
+
"learning_rate": 1.5297518355556132e-07,
|
3606 |
+
"loss": 0.5059,
|
3607 |
+
"step": 5140
|
3608 |
+
},
|
3609 |
+
{
|
3610 |
+
"epoch": 3.6,
|
3611 |
+
"grad_norm": 0.5170972166302202,
|
3612 |
+
"learning_rate": 1.467632980112023e-07,
|
3613 |
+
"loss": 0.5214,
|
3614 |
+
"step": 5150
|
3615 |
+
},
|
3616 |
+
{
|
3617 |
+
"epoch": 3.61,
|
3618 |
+
"grad_norm": 0.5145933451855358,
|
3619 |
+
"learning_rate": 1.406774629032923e-07,
|
3620 |
+
"loss": 0.511,
|
3621 |
+
"step": 5160
|
3622 |
+
},
|
3623 |
+
{
|
3624 |
+
"epoch": 3.62,
|
3625 |
+
"grad_norm": 0.5012480980422283,
|
3626 |
+
"learning_rate": 1.347179070024903e-07,
|
3627 |
+
"loss": 0.5179,
|
3628 |
+
"step": 5170
|
3629 |
+
},
|
3630 |
+
{
|
3631 |
+
"epoch": 3.63,
|
3632 |
+
"grad_norm": 0.5157422802936725,
|
3633 |
+
"learning_rate": 1.2888485433253521e-07,
|
3634 |
+
"loss": 0.5193,
|
3635 |
+
"step": 5180
|
3636 |
+
},
|
3637 |
+
{
|
3638 |
+
"epoch": 3.63,
|
3639 |
+
"grad_norm": 0.5104197669978088,
|
3640 |
+
"learning_rate": 1.2317852416182378e-07,
|
3641 |
+
"loss": 0.5221,
|
3642 |
+
"step": 5190
|
3643 |
+
},
|
3644 |
+
{
|
3645 |
+
"epoch": 3.64,
|
3646 |
+
"grad_norm": 0.48689303934415246,
|
3647 |
+
"learning_rate": 1.1759913099516816e-07,
|
3648 |
+
"loss": 0.5118,
|
3649 |
+
"step": 5200
|
3650 |
+
},
|
3651 |
+
{
|
3652 |
+
"epoch": 3.65,
|
3653 |
+
"grad_norm": 0.5105879788600957,
|
3654 |
+
"learning_rate": 1.1214688456573247e-07,
|
3655 |
+
"loss": 0.5178,
|
3656 |
+
"step": 5210
|
3657 |
+
},
|
3658 |
+
{
|
3659 |
+
"epoch": 3.65,
|
3660 |
+
"grad_norm": 0.4742285263986786,
|
3661 |
+
"learning_rate": 1.0682198982714814e-07,
|
3662 |
+
"loss": 0.534,
|
3663 |
+
"step": 5220
|
3664 |
+
},
|
3665 |
+
{
|
3666 |
+
"epoch": 3.66,
|
3667 |
+
"grad_norm": 0.5096564376650945,
|
3668 |
+
"learning_rate": 1.0162464694581235e-07,
|
3669 |
+
"loss": 0.5272,
|
3670 |
+
"step": 5230
|
3671 |
+
},
|
3672 |
+
{
|
3673 |
+
"epoch": 3.67,
|
3674 |
+
"grad_norm": 0.5068212494030221,
|
3675 |
+
"learning_rate": 9.65550512933605e-08,
|
3676 |
+
"loss": 0.5252,
|
3677 |
+
"step": 5240
|
3678 |
+
},
|
3679 |
+
{
|
3680 |
+
"epoch": 3.68,
|
3681 |
+
"grad_norm": 0.5132873703711879,
|
3682 |
+
"learning_rate": 9.16133934393224e-08,
|
3683 |
+
"loss": 0.5161,
|
3684 |
+
"step": 5250
|
3685 |
+
},
|
3686 |
+
{
|
3687 |
+
"epoch": 3.68,
|
3688 |
+
"grad_norm": 0.496214740845792,
|
3689 |
+
"learning_rate": 8.67998591439612e-08,
|
3690 |
+
"loss": 0.518,
|
3691 |
+
"step": 5260
|
3692 |
+
},
|
3693 |
+
{
|
3694 |
+
"epoch": 3.69,
|
3695 |
+
"grad_norm": 0.5257117991696062,
|
3696 |
+
"learning_rate": 8.21146293512876e-08,
|
3697 |
+
"loss": 0.5201,
|
3698 |
+
"step": 5270
|
3699 |
+
},
|
3700 |
+
{
|
3701 |
+
"epoch": 3.7,
|
3702 |
+
"grad_norm": 0.5038613162646833,
|
3703 |
+
"learning_rate": 7.755788018225961e-08,
|
3704 |
+
"loss": 0.5439,
|
3705 |
+
"step": 5280
|
3706 |
+
},
|
3707 |
+
{
|
3708 |
+
"epoch": 3.7,
|
3709 |
+
"grad_norm": 0.5108263338716986,
|
3710 |
+
"learning_rate": 7.31297829281617e-08,
|
3711 |
+
"loss": 0.5132,
|
3712 |
+
"step": 5290
|
3713 |
+
},
|
3714 |
+
{
|
3715 |
+
"epoch": 3.71,
|
3716 |
+
"grad_norm": 0.5149498952477054,
|
3717 |
+
"learning_rate": 6.883050404416552e-08,
|
3718 |
+
"loss": 0.5111,
|
3719 |
+
"step": 5300
|
3720 |
+
},
|
3721 |
+
{
|
3722 |
+
"epoch": 3.72,
|
3723 |
+
"grad_norm": 0.5047749285108949,
|
3724 |
+
"learning_rate": 6.46602051430732e-08,
|
3725 |
+
"loss": 0.5307,
|
3726 |
+
"step": 5310
|
3727 |
+
},
|
3728 |
+
{
|
3729 |
+
"epoch": 3.73,
|
3730 |
+
"grad_norm": 0.5156795764243357,
|
3731 |
+
"learning_rate": 6.061904298924253e-08,
|
3732 |
+
"loss": 0.5285,
|
3733 |
+
"step": 5320
|
3734 |
+
},
|
3735 |
+
{
|
3736 |
+
"epoch": 3.73,
|
3737 |
+
"grad_norm": 0.5144201053701509,
|
3738 |
+
"learning_rate": 5.670716949269278e-08,
|
3739 |
+
"loss": 0.5148,
|
3740 |
+
"step": 5330
|
3741 |
+
},
|
3742 |
+
{
|
3743 |
+
"epoch": 3.74,
|
3744 |
+
"grad_norm": 0.507394331507882,
|
3745 |
+
"learning_rate": 5.2924731703395564e-08,
|
3746 |
+
"loss": 0.5206,
|
3747 |
+
"step": 5340
|
3748 |
+
},
|
3749 |
+
{
|
3750 |
+
"epoch": 3.75,
|
3751 |
+
"grad_norm": 0.48368946217469994,
|
3752 |
+
"learning_rate": 4.927187180574666e-08,
|
3753 |
+
"loss": 0.526,
|
3754 |
+
"step": 5350
|
3755 |
+
},
|
3756 |
+
{
|
3757 |
+
"epoch": 3.75,
|
3758 |
+
"grad_norm": 0.5047554925764675,
|
3759 |
+
"learning_rate": 4.574872711322103e-08,
|
3760 |
+
"loss": 0.5126,
|
3761 |
+
"step": 5360
|
3762 |
+
},
|
3763 |
+
{
|
3764 |
+
"epoch": 3.76,
|
3765 |
+
"grad_norm": 0.4949463708763226,
|
3766 |
+
"learning_rate": 4.2355430063211405e-08,
|
3767 |
+
"loss": 0.5204,
|
3768 |
+
"step": 5370
|
3769 |
+
},
|
3770 |
+
{
|
3771 |
+
"epoch": 3.77,
|
3772 |
+
"grad_norm": 0.5079311960306774,
|
3773 |
+
"learning_rate": 3.909210821205017e-08,
|
3774 |
+
"loss": 0.5189,
|
3775 |
+
"step": 5380
|
3776 |
+
},
|
3777 |
+
{
|
3778 |
+
"epoch": 3.78,
|
3779 |
+
"grad_norm": 0.4902741464423996,
|
3780 |
+
"learning_rate": 3.595888423021354e-08,
|
3781 |
+
"loss": 0.513,
|
3782 |
+
"step": 5390
|
3783 |
+
},
|
3784 |
+
{
|
3785 |
+
"epoch": 3.78,
|
3786 |
+
"grad_norm": 0.5421885848655773,
|
3787 |
+
"learning_rate": 3.295587589771071e-08,
|
3788 |
+
"loss": 0.5093,
|
3789 |
+
"step": 5400
|
3790 |
+
},
|
3791 |
+
{
|
3792 |
+
"epoch": 3.79,
|
3793 |
+
"grad_norm": 0.49756539244831294,
|
3794 |
+
"learning_rate": 3.008319609965676e-08,
|
3795 |
+
"loss": 0.5144,
|
3796 |
+
"step": 5410
|
3797 |
+
},
|
3798 |
+
{
|
3799 |
+
"epoch": 3.8,
|
3800 |
+
"grad_norm": 0.5074328229331989,
|
3801 |
+
"learning_rate": 2.734095282202942e-08,
|
3802 |
+
"loss": 0.5133,
|
3803 |
+
"step": 5420
|
3804 |
+
},
|
3805 |
+
{
|
3806 |
+
"epoch": 3.8,
|
3807 |
+
"grad_norm": 0.49772891591572227,
|
3808 |
+
"learning_rate": 2.4729249147608378e-08,
|
3809 |
+
"loss": 0.5251,
|
3810 |
+
"step": 5430
|
3811 |
+
},
|
3812 |
+
{
|
3813 |
+
"epoch": 3.81,
|
3814 |
+
"grad_norm": 0.5088034449477752,
|
3815 |
+
"learning_rate": 2.224818325210237e-08,
|
3816 |
+
"loss": 0.5175,
|
3817 |
+
"step": 5440
|
3818 |
+
},
|
3819 |
+
{
|
3820 |
+
"epoch": 3.82,
|
3821 |
+
"grad_norm": 0.4826584150965653,
|
3822 |
+
"learning_rate": 1.9897848400456496e-08,
|
3823 |
+
"loss": 0.5141,
|
3824 |
+
"step": 5450
|
3825 |
+
},
|
3826 |
+
{
|
3827 |
+
"epoch": 3.83,
|
3828 |
+
"grad_norm": 0.5172662799041124,
|
3829 |
+
"learning_rate": 1.7678332943348807e-08,
|
3830 |
+
"loss": 0.5197,
|
3831 |
+
"step": 5460
|
3832 |
+
},
|
3833 |
+
{
|
3834 |
+
"epoch": 3.83,
|
3835 |
+
"grad_norm": 0.48940063691629393,
|
3836 |
+
"learning_rate": 1.5589720313866794e-08,
|
3837 |
+
"loss": 0.5059,
|
3838 |
+
"step": 5470
|
3839 |
+
},
|
3840 |
+
{
|
3841 |
+
"epoch": 3.84,
|
3842 |
+
"grad_norm": 0.517098264403305,
|
3843 |
+
"learning_rate": 1.3632089024371574e-08,
|
3844 |
+
"loss": 0.5141,
|
3845 |
+
"step": 5480
|
3846 |
+
},
|
3847 |
+
{
|
3848 |
+
"epoch": 3.85,
|
3849 |
+
"grad_norm": 0.48979313956431636,
|
3850 |
+
"learning_rate": 1.1805512663549345e-08,
|
3851 |
+
"loss": 0.5136,
|
3852 |
+
"step": 5490
|
3853 |
+
},
|
3854 |
+
{
|
3855 |
+
"epoch": 3.85,
|
3856 |
+
"grad_norm": 0.48660701715860905,
|
3857 |
+
"learning_rate": 1.0110059893640055e-08,
|
3858 |
+
"loss": 0.5212,
|
3859 |
+
"step": 5500
|
3860 |
+
},
|
3861 |
+
{
|
3862 |
+
"epoch": 3.86,
|
3863 |
+
"grad_norm": 0.4841422308843411,
|
3864 |
+
"learning_rate": 8.54579444786152e-09,
|
3865 |
+
"loss": 0.5228,
|
3866 |
+
"step": 5510
|
3867 |
+
},
|
3868 |
+
{
|
3869 |
+
"epoch": 3.87,
|
3870 |
+
"grad_norm": 0.4851052180007293,
|
3871 |
+
"learning_rate": 7.112775128009174e-09,
|
3872 |
+
"loss": 0.5146,
|
3873 |
+
"step": 5520
|
3874 |
+
},
|
3875 |
+
{
|
3876 |
+
"epoch": 3.88,
|
3877 |
+
"grad_norm": 0.49400550323274894,
|
3878 |
+
"learning_rate": 5.811055802249721e-09,
|
3879 |
+
"loss": 0.5277,
|
3880 |
+
"step": 5530
|
3881 |
+
},
|
3882 |
+
{
|
3883 |
+
"epoch": 3.88,
|
3884 |
+
"grad_norm": 0.512928633478054,
|
3885 |
+
"learning_rate": 4.640685403093147e-09,
|
3886 |
+
"loss": 0.5216,
|
3887 |
+
"step": 5540
|
3888 |
+
},
|
3889 |
+
{
|
3890 |
+
"epoch": 3.89,
|
3891 |
+
"grad_norm": 0.48929257944769156,
|
3892 |
+
"learning_rate": 3.6017079255547534e-09,
|
3893 |
+
"loss": 0.5172,
|
3894 |
+
"step": 5550
|
3895 |
+
},
|
3896 |
+
{
|
3897 |
+
"epoch": 3.9,
|
3898 |
+
"grad_norm": 0.5049424795736568,
|
3899 |
+
"learning_rate": 2.6941624255001904e-09,
|
3900 |
+
"loss": 0.5147,
|
3901 |
+
"step": 5560
|
3902 |
+
},
|
3903 |
+
{
|
3904 |
+
"epoch": 3.9,
|
3905 |
+
"grad_norm": 0.5046094240590331,
|
3906 |
+
"learning_rate": 1.9180830181797505e-09,
|
3907 |
+
"loss": 0.5222,
|
3908 |
+
"step": 5570
|
3909 |
+
},
|
3910 |
+
{
|
3911 |
+
"epoch": 3.91,
|
3912 |
+
"grad_norm": 0.5035868811303936,
|
3913 |
+
"learning_rate": 1.273498876942558e-09,
|
3914 |
+
"loss": 0.511,
|
3915 |
+
"step": 5580
|
3916 |
+
},
|
3917 |
+
{
|
3918 |
+
"epoch": 3.92,
|
3919 |
+
"grad_norm": 0.48822795586505313,
|
3920 |
+
"learning_rate": 7.604342321435032e-10,
|
3921 |
+
"loss": 0.5222,
|
3922 |
+
"step": 5590
|
3923 |
+
},
|
3924 |
+
{
|
3925 |
+
"epoch": 3.92,
|
3926 |
+
"grad_norm": 0.5199444169728372,
|
3927 |
+
"learning_rate": 3.789083702293028e-10,
|
3928 |
+
"loss": 0.5236,
|
3929 |
+
"step": 5600
|
3930 |
+
},
|
3931 |
+
{
|
3932 |
+
"epoch": 3.93,
|
3933 |
+
"grad_norm": 0.528390397947652,
|
3934 |
+
"learning_rate": 1.2893563301535904e-10,
|
3935 |
+
"loss": 0.5187,
|
3936 |
+
"step": 5610
|
3937 |
+
},
|
3938 |
+
{
|
3939 |
+
"epoch": 3.94,
|
3940 |
+
"grad_norm": 0.49922315857737276,
|
3941 |
+
"learning_rate": 1.0525417146023396e-11,
|
3942 |
+
"loss": 0.5179,
|
3943 |
+
"step": 5620
|
3944 |
+
}
|
3945 |
+
],
|
3946 |
+
"logging_steps": 10,
|
3947 |
+
"max_steps": 5624,
|
3948 |
+
"num_input_tokens_seen": 0,
|
3949 |
+
"num_train_epochs": 4,
|
3950 |
+
"save_steps": 500,
|
3951 |
+
"total_flos": 2354981319475200.0,
|
3952 |
+
"train_batch_size": 8,
|
3953 |
+
"trial_name": null,
|
3954 |
+
"trial_params": null
|
3955 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d85d2ff5720e05dbb5441c3d20e7ba4b6a45de57469d8179edcc7769226b30da
|
3 |
+
size 7800
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|