jmprcp commited on
Commit
2b97acc
1 Parent(s): 1ffda9a

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<|im_end|>": 32000,
3
+ "<|im_start|>": 32001
4
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Unbabel/TowerBase-7B-v0.1",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 32000,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 32,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.40.0.dev0",
26
+ "use_cache": false,
27
+ "vocab_size": 32002
28
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.40.0.dev0"
7
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step5624
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:419140c230c3066b065684f79909a8973c2f663616dae18206cec205f21e8942
3
+ size 4939001736
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aec1f182a8cab4287640bb45035987839589c066c68af85ab091d1b2f12dd254
3
+ size 4947390880
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aba4188a43b9e11083bd4c27091ce9899a46c8b4729ec483913252b6e64e9b3
3
+ size 3590505200
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476864000
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f2439da621f14c22b4f733e91bfc9de6b506d28d7b8d6f3eaca2e0b4f24c078
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9e3fb386557f376b8946af5b8c91f9418f374dddb2ad9da4868b1ef16778c32
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc7774d06045635bece9e960378fdc6913bf7bbbc903444cc570d1ca6ac25645
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d98c54a80a914fecf43d06ea81432499f46e70664f1d04651bf339163e30fa9e
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cda74cda78125cfad5a2d4b09c5a8c8327b1a8d68aa04ba8799fe223d26bcee8
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<|im_end|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32001": {
38
+ "content": "<|im_start|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ }
45
+ },
46
+ "bos_token": "<s>",
47
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
48
+ "clean_up_tokenization_spaces": false,
49
+ "eos_token": "<|im_end|>",
50
+ "legacy": false,
51
+ "model_max_length": 1000000000000000019884624838656,
52
+ "pad_token": "</s>",
53
+ "padding_side": "right",
54
+ "sp_model_kwargs": {},
55
+ "tokenizer_class": "LlamaTokenizer",
56
+ "unk_token": "<unk>",
57
+ "use_default_system_prompt": false
58
+ }
trainer_state.json ADDED
@@ -0,0 +1,3955 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.9420444444444445,
5
+ "eval_steps": 500,
6
+ "global_step": 5624,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "grad_norm": 9.912928587976149,
14
+ "learning_rate": 1.4e-07,
15
+ "loss": 1.0098,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "grad_norm": 9.065321089366511,
21
+ "learning_rate": 2.8e-07,
22
+ "loss": 1.0032,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.02,
27
+ "grad_norm": 4.529282680442283,
28
+ "learning_rate": 4.2e-07,
29
+ "loss": 0.9767,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.03,
34
+ "grad_norm": 4.079773534866118,
35
+ "learning_rate": 5.6e-07,
36
+ "loss": 0.9341,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.04,
41
+ "grad_norm": 1.7504240808921168,
42
+ "learning_rate": 7.000000000000001e-07,
43
+ "loss": 0.8727,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.04,
48
+ "grad_norm": 0.7446189301316752,
49
+ "learning_rate": 8.4e-07,
50
+ "loss": 0.7997,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "grad_norm": 0.5893489037586176,
56
+ "learning_rate": 9.800000000000001e-07,
57
+ "loss": 0.7828,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.06,
62
+ "grad_norm": 0.5798012459841311,
63
+ "learning_rate": 1.12e-06,
64
+ "loss": 0.7671,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.06,
69
+ "grad_norm": 0.5143143417454488,
70
+ "learning_rate": 1.26e-06,
71
+ "loss": 0.777,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.07,
76
+ "grad_norm": 0.5006881361687121,
77
+ "learning_rate": 1.4000000000000001e-06,
78
+ "loss": 0.7709,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.08,
83
+ "grad_norm": 0.5268772561224019,
84
+ "learning_rate": 1.54e-06,
85
+ "loss": 0.7751,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.09,
90
+ "grad_norm": 0.49059329535011015,
91
+ "learning_rate": 1.68e-06,
92
+ "loss": 0.7588,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.09,
97
+ "grad_norm": 0.548982179156723,
98
+ "learning_rate": 1.82e-06,
99
+ "loss": 0.758,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.1,
104
+ "grad_norm": 0.5118740800557817,
105
+ "learning_rate": 1.9600000000000003e-06,
106
+ "loss": 0.7492,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.11,
111
+ "grad_norm": 0.47988356348194033,
112
+ "learning_rate": 2.1e-06,
113
+ "loss": 0.7479,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.11,
118
+ "grad_norm": 0.5324095582498372,
119
+ "learning_rate": 2.24e-06,
120
+ "loss": 0.7344,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.12,
125
+ "grad_norm": 0.49578185528674784,
126
+ "learning_rate": 2.38e-06,
127
+ "loss": 0.7379,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.13,
132
+ "grad_norm": 0.4751722809020323,
133
+ "learning_rate": 2.52e-06,
134
+ "loss": 0.7515,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.14,
139
+ "grad_norm": 0.4898512842949614,
140
+ "learning_rate": 2.66e-06,
141
+ "loss": 0.7428,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.14,
146
+ "grad_norm": 0.4938014103724035,
147
+ "learning_rate": 2.8000000000000003e-06,
148
+ "loss": 0.7356,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.15,
153
+ "grad_norm": 0.4853179196888149,
154
+ "learning_rate": 2.94e-06,
155
+ "loss": 0.7338,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.16,
160
+ "grad_norm": 0.5006261354893382,
161
+ "learning_rate": 3.08e-06,
162
+ "loss": 0.7228,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.16,
167
+ "grad_norm": 0.49494536099466524,
168
+ "learning_rate": 3.22e-06,
169
+ "loss": 0.7371,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.17,
174
+ "grad_norm": 0.4745560090617258,
175
+ "learning_rate": 3.36e-06,
176
+ "loss": 0.7374,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "grad_norm": 0.458424659300056,
182
+ "learning_rate": 3.5e-06,
183
+ "loss": 0.7284,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.18,
188
+ "grad_norm": 0.4918105642778609,
189
+ "learning_rate": 3.64e-06,
190
+ "loss": 0.719,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.19,
195
+ "grad_norm": 0.45994092727545755,
196
+ "learning_rate": 3.7800000000000002e-06,
197
+ "loss": 0.7328,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.2,
202
+ "grad_norm": 0.4888877840053054,
203
+ "learning_rate": 3.920000000000001e-06,
204
+ "loss": 0.7257,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.21,
209
+ "grad_norm": 0.4891132357037931,
210
+ "learning_rate": 4.059999999999999e-06,
211
+ "loss": 0.7146,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.21,
216
+ "grad_norm": 0.4659780107286472,
217
+ "learning_rate": 4.2e-06,
218
+ "loss": 0.7207,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.22,
223
+ "grad_norm": 0.4747662452681582,
224
+ "learning_rate": 4.34e-06,
225
+ "loss": 0.7196,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.23,
230
+ "grad_norm": 0.46183058951309874,
231
+ "learning_rate": 4.48e-06,
232
+ "loss": 0.7166,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.23,
237
+ "grad_norm": 0.47556837186042844,
238
+ "learning_rate": 4.62e-06,
239
+ "loss": 0.7138,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.24,
244
+ "grad_norm": 0.4646419935884572,
245
+ "learning_rate": 4.76e-06,
246
+ "loss": 0.7166,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.25,
251
+ "grad_norm": 0.47208612393069765,
252
+ "learning_rate": 4.9e-06,
253
+ "loss": 0.7071,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.26,
258
+ "grad_norm": 0.47395551626034477,
259
+ "learning_rate": 5.04e-06,
260
+ "loss": 0.7081,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.26,
265
+ "grad_norm": 0.46256038389399284,
266
+ "learning_rate": 5.1799999999999995e-06,
267
+ "loss": 0.7112,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.27,
272
+ "grad_norm": 0.44989559880311664,
273
+ "learning_rate": 5.32e-06,
274
+ "loss": 0.7157,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.28,
279
+ "grad_norm": 0.4759980664139243,
280
+ "learning_rate": 5.46e-06,
281
+ "loss": 0.716,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.28,
286
+ "grad_norm": 0.47761427911509746,
287
+ "learning_rate": 5.600000000000001e-06,
288
+ "loss": 0.6936,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.29,
293
+ "grad_norm": 0.4823631066912239,
294
+ "learning_rate": 5.739999999999999e-06,
295
+ "loss": 0.7096,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.3,
300
+ "grad_norm": 0.4692563644972781,
301
+ "learning_rate": 5.88e-06,
302
+ "loss": 0.6955,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.31,
307
+ "grad_norm": 0.4758216043542266,
308
+ "learning_rate": 6.02e-06,
309
+ "loss": 0.7046,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.31,
314
+ "grad_norm": 0.4607724176991764,
315
+ "learning_rate": 6.16e-06,
316
+ "loss": 0.7071,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.32,
321
+ "grad_norm": 0.47650098464440593,
322
+ "learning_rate": 6.3e-06,
323
+ "loss": 0.6948,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.33,
328
+ "grad_norm": 0.4927763843500283,
329
+ "learning_rate": 6.44e-06,
330
+ "loss": 0.7138,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.33,
335
+ "grad_norm": 0.44343044028786904,
336
+ "learning_rate": 6.58e-06,
337
+ "loss": 0.7033,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.34,
342
+ "grad_norm": 0.45708129790603597,
343
+ "learning_rate": 6.72e-06,
344
+ "loss": 0.7038,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.35,
349
+ "grad_norm": 0.47564264251663835,
350
+ "learning_rate": 6.8599999999999995e-06,
351
+ "loss": 0.6974,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.36,
356
+ "grad_norm": 0.4561386006973232,
357
+ "learning_rate": 7e-06,
358
+ "loss": 0.702,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.36,
363
+ "grad_norm": 0.4318637464381274,
364
+ "learning_rate": 6.999934216315939e-06,
365
+ "loss": 0.7054,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.37,
370
+ "grad_norm": 0.47772094451329594,
371
+ "learning_rate": 6.999736867736609e-06,
372
+ "loss": 0.6946,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.38,
377
+ "grad_norm": 0.45891608711087106,
378
+ "learning_rate": 6.9994079616804764e-06,
379
+ "loss": 0.6952,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.38,
384
+ "grad_norm": 0.46731862765960264,
385
+ "learning_rate": 6.9989475105113426e-06,
386
+ "loss": 0.6888,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.39,
391
+ "grad_norm": 0.4667223098464595,
392
+ "learning_rate": 6.998355531537879e-06,
393
+ "loss": 0.7017,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.4,
398
+ "grad_norm": 0.46285196540927176,
399
+ "learning_rate": 6.997632047012975e-06,
400
+ "loss": 0.7051,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.41,
405
+ "grad_norm": 0.48044807815149254,
406
+ "learning_rate": 6.996777084132904e-06,
407
+ "loss": 0.701,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.41,
412
+ "grad_norm": 0.47600970966063727,
413
+ "learning_rate": 6.995790675036298e-06,
414
+ "loss": 0.7001,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.42,
419
+ "grad_norm": 0.4494522317826872,
420
+ "learning_rate": 6.994672856802944e-06,
421
+ "loss": 0.7042,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.43,
426
+ "grad_norm": 0.4623294450089233,
427
+ "learning_rate": 6.993423671452386e-06,
428
+ "loss": 0.69,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.43,
433
+ "grad_norm": 0.43825456028915594,
434
+ "learning_rate": 6.9920431659423436e-06,
435
+ "loss": 0.6996,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.44,
440
+ "grad_norm": 0.4568055452742323,
441
+ "learning_rate": 6.990531392166956e-06,
442
+ "loss": 0.6939,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.45,
447
+ "grad_norm": 0.4302767633743081,
448
+ "learning_rate": 6.988888406954821e-06,
449
+ "loss": 0.6898,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.46,
454
+ "grad_norm": 0.4762852616798798,
455
+ "learning_rate": 6.9871142720668644e-06,
456
+ "loss": 0.703,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.46,
461
+ "grad_norm": 0.4572026337069386,
462
+ "learning_rate": 6.985209054194017e-06,
463
+ "loss": 0.7004,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.47,
468
+ "grad_norm": 0.45803902960498666,
469
+ "learning_rate": 6.983172824954708e-06,
470
+ "loss": 0.6853,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.48,
475
+ "grad_norm": 0.44353624606381903,
476
+ "learning_rate": 6.9810056608921725e-06,
477
+ "loss": 0.7074,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.48,
482
+ "grad_norm": 0.44517458769087626,
483
+ "learning_rate": 6.978707643471573e-06,
484
+ "loss": 0.6988,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.49,
489
+ "grad_norm": 0.4616555458392388,
490
+ "learning_rate": 6.97627885907694e-06,
491
+ "loss": 0.7034,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.5,
496
+ "grad_norm": 0.4770896081066365,
497
+ "learning_rate": 6.973719399007923e-06,
498
+ "loss": 0.6935,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.5,
503
+ "grad_norm": 0.45665921054521347,
504
+ "learning_rate": 6.9710293594763545e-06,
505
+ "loss": 0.6773,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.51,
510
+ "grad_norm": 0.48834217157342125,
511
+ "learning_rate": 6.968208841602645e-06,
512
+ "loss": 0.6974,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.52,
517
+ "grad_norm": 0.4661409470252182,
518
+ "learning_rate": 6.965257951411967e-06,
519
+ "loss": 0.6796,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.53,
524
+ "grad_norm": 0.4249423447942054,
525
+ "learning_rate": 6.962176799830279e-06,
526
+ "loss": 0.686,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.53,
531
+ "grad_norm": 0.4517631229399239,
532
+ "learning_rate": 6.958965502680155e-06,
533
+ "loss": 0.6968,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.54,
538
+ "grad_norm": 0.4334006789419362,
539
+ "learning_rate": 6.955624180676427e-06,
540
+ "loss": 0.705,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.55,
545
+ "grad_norm": 0.44354874837116653,
546
+ "learning_rate": 6.9521529594216516e-06,
547
+ "loss": 0.6954,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.55,
552
+ "grad_norm": 0.4606606226964418,
553
+ "learning_rate": 6.948551969401381e-06,
554
+ "loss": 0.6965,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.56,
559
+ "grad_norm": 0.46221163538458165,
560
+ "learning_rate": 6.94482134597927e-06,
561
+ "loss": 0.695,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.57,
566
+ "grad_norm": 0.4636824720485381,
567
+ "learning_rate": 6.940961229391975e-06,
568
+ "loss": 0.6919,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.58,
573
+ "grad_norm": 0.4450527833539268,
574
+ "learning_rate": 6.936971764743891e-06,
575
+ "loss": 0.6977,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.58,
580
+ "grad_norm": 0.4358125416971688,
581
+ "learning_rate": 6.932853102001694e-06,
582
+ "loss": 0.6998,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.59,
587
+ "grad_norm": 0.45623590289661414,
588
+ "learning_rate": 6.928605395988701e-06,
589
+ "loss": 0.6954,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.6,
594
+ "grad_norm": 0.4536975058820564,
595
+ "learning_rate": 6.924228806379058e-06,
596
+ "loss": 0.6742,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.6,
601
+ "grad_norm": 0.4563719379438227,
602
+ "learning_rate": 6.919723497691728e-06,
603
+ "loss": 0.6921,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.61,
608
+ "grad_norm": 0.45279224746852664,
609
+ "learning_rate": 6.915089639284313e-06,
610
+ "loss": 0.6861,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.62,
615
+ "grad_norm": 0.466062080319079,
616
+ "learning_rate": 6.910327405346686e-06,
617
+ "loss": 0.6895,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.63,
622
+ "grad_norm": 0.443881137156012,
623
+ "learning_rate": 6.905436974894443e-06,
624
+ "loss": 0.7008,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.63,
629
+ "grad_norm": 0.47752762402129206,
630
+ "learning_rate": 6.900418531762173e-06,
631
+ "loss": 0.6985,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.64,
636
+ "grad_norm": 0.4542692407893758,
637
+ "learning_rate": 6.89527226459655e-06,
638
+ "loss": 0.6822,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.65,
643
+ "grad_norm": 0.4314820719874765,
644
+ "learning_rate": 6.889998366849237e-06,
645
+ "loss": 0.691,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.65,
650
+ "grad_norm": 0.4278370127210443,
651
+ "learning_rate": 6.884597036769621e-06,
652
+ "loss": 0.689,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.66,
657
+ "grad_norm": 0.45134601911703476,
658
+ "learning_rate": 6.879068477397353e-06,
659
+ "loss": 0.6898,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.67,
664
+ "grad_norm": 0.45160503192413054,
665
+ "learning_rate": 6.87341289655472e-06,
666
+ "loss": 0.6869,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.68,
671
+ "grad_norm": 0.41025143635863104,
672
+ "learning_rate": 6.867630506838833e-06,
673
+ "loss": 0.6984,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.68,
678
+ "grad_norm": 0.46520301654074564,
679
+ "learning_rate": 6.861721525613633e-06,
680
+ "loss": 0.6843,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.69,
685
+ "grad_norm": 0.451991102882798,
686
+ "learning_rate": 6.8556861750017235e-06,
687
+ "loss": 0.6962,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.7,
692
+ "grad_norm": 0.418111038766468,
693
+ "learning_rate": 6.849524681876018e-06,
694
+ "loss": 0.6797,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.7,
699
+ "grad_norm": 0.4403261547939229,
700
+ "learning_rate": 6.843237277851211e-06,
701
+ "loss": 0.6965,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.71,
706
+ "grad_norm": 0.426598785059419,
707
+ "learning_rate": 6.836824199275074e-06,
708
+ "loss": 0.6821,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.72,
713
+ "grad_norm": 0.42988247771547117,
714
+ "learning_rate": 6.830285687219569e-06,
715
+ "loss": 0.6911,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.73,
720
+ "grad_norm": 0.452230475071558,
721
+ "learning_rate": 6.823621987471789e-06,
722
+ "loss": 0.6851,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.73,
727
+ "grad_norm": 0.4267205539811686,
728
+ "learning_rate": 6.816833350524716e-06,
729
+ "loss": 0.6777,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.74,
734
+ "grad_norm": 0.44148424584394874,
735
+ "learning_rate": 6.809920031567808e-06,
736
+ "loss": 0.6838,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.75,
741
+ "grad_norm": 0.43306877795839893,
742
+ "learning_rate": 6.802882290477399e-06,
743
+ "loss": 0.6864,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.75,
748
+ "grad_norm": 0.4952482617663558,
749
+ "learning_rate": 6.79572039180694e-06,
750
+ "loss": 0.6904,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.76,
755
+ "grad_norm": 0.45382453893592856,
756
+ "learning_rate": 6.788434604777048e-06,
757
+ "loss": 0.6795,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.77,
762
+ "grad_norm": 0.452960843334945,
763
+ "learning_rate": 6.781025203265388e-06,
764
+ "loss": 0.6891,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.78,
769
+ "grad_norm": 0.4537364245497661,
770
+ "learning_rate": 6.773492465796373e-06,
771
+ "loss": 0.6907,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.78,
776
+ "grad_norm": 0.44929090527897886,
777
+ "learning_rate": 6.765836675530703e-06,
778
+ "loss": 0.6798,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.79,
783
+ "grad_norm": 0.46381413350008455,
784
+ "learning_rate": 6.758058120254715e-06,
785
+ "loss": 0.6716,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.8,
790
+ "grad_norm": 0.4309028536458763,
791
+ "learning_rate": 6.750157092369563e-06,
792
+ "loss": 0.6799,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.8,
797
+ "grad_norm": 0.43717422966700575,
798
+ "learning_rate": 6.742133888880233e-06,
799
+ "loss": 0.6883,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.81,
804
+ "grad_norm": 0.4459700930425581,
805
+ "learning_rate": 6.7339888113843696e-06,
806
+ "loss": 0.6891,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.82,
811
+ "grad_norm": 0.44045298948848877,
812
+ "learning_rate": 6.725722166060951e-06,
813
+ "loss": 0.6817,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.82,
818
+ "grad_norm": 0.4485899862146157,
819
+ "learning_rate": 6.717334263658766e-06,
820
+ "loss": 0.6897,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.83,
825
+ "grad_norm": 0.45682000330961775,
826
+ "learning_rate": 6.70882541948474e-06,
827
+ "loss": 0.6776,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.84,
832
+ "grad_norm": 0.48037041295136884,
833
+ "learning_rate": 6.700195953392085e-06,
834
+ "loss": 0.6872,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.85,
839
+ "grad_norm": 0.44334741491819346,
840
+ "learning_rate": 6.691446189768268e-06,
841
+ "loss": 0.6798,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.85,
846
+ "grad_norm": 0.4674740757760583,
847
+ "learning_rate": 6.682576457522825e-06,
848
+ "loss": 0.6977,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.86,
853
+ "grad_norm": 0.4696181980144796,
854
+ "learning_rate": 6.673587090074993e-06,
855
+ "loss": 0.6896,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.87,
860
+ "grad_norm": 0.4593954697303246,
861
+ "learning_rate": 6.664478425341176e-06,
862
+ "loss": 0.6749,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.87,
867
+ "grad_norm": 0.41647753357217115,
868
+ "learning_rate": 6.655250805722244e-06,
869
+ "loss": 0.6894,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.88,
874
+ "grad_norm": 0.4245409839045758,
875
+ "learning_rate": 6.645904578090662e-06,
876
+ "loss": 0.6693,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.89,
881
+ "grad_norm": 0.45490183172736,
882
+ "learning_rate": 6.636440093777451e-06,
883
+ "loss": 0.6881,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.9,
888
+ "grad_norm": 0.4633877447287089,
889
+ "learning_rate": 6.626857708558979e-06,
890
+ "loss": 0.6953,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.9,
895
+ "grad_norm": 0.45069656102358646,
896
+ "learning_rate": 6.617157782643591e-06,
897
+ "loss": 0.6787,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.91,
902
+ "grad_norm": 0.44438426822862237,
903
+ "learning_rate": 6.6073406806580646e-06,
904
+ "loss": 0.6859,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.92,
909
+ "grad_norm": 0.4335460798475662,
910
+ "learning_rate": 6.597406771633906e-06,
911
+ "loss": 0.6829,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.92,
916
+ "grad_norm": 0.4282672786086354,
917
+ "learning_rate": 6.587356428993477e-06,
918
+ "loss": 0.6831,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.93,
923
+ "grad_norm": 0.46465171297436636,
924
+ "learning_rate": 6.577190030535957e-06,
925
+ "loss": 0.6778,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.94,
930
+ "grad_norm": 0.4590812961346198,
931
+ "learning_rate": 6.566907958423142e-06,
932
+ "loss": 0.6701,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.95,
937
+ "grad_norm": 0.4180631333820519,
938
+ "learning_rate": 6.5565105991650815e-06,
939
+ "loss": 0.6825,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.95,
944
+ "grad_norm": 0.42684427340923925,
945
+ "learning_rate": 6.545998343605544e-06,
946
+ "loss": 0.6823,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.96,
951
+ "grad_norm": 0.6515643833482546,
952
+ "learning_rate": 6.5353715869073275e-06,
953
+ "loss": 0.6748,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.97,
958
+ "grad_norm": 0.42995190312179654,
959
+ "learning_rate": 6.524630728537408e-06,
960
+ "loss": 0.6896,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.97,
965
+ "grad_norm": 0.4307066820527156,
966
+ "learning_rate": 6.513776172251919e-06,
967
+ "loss": 0.6821,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.98,
972
+ "grad_norm": 0.4401373902110004,
973
+ "learning_rate": 6.5028083260809735e-06,
974
+ "loss": 0.6729,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.99,
979
+ "grad_norm": 0.420372235119902,
980
+ "learning_rate": 6.491727602313334e-06,
981
+ "loss": 0.6812,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 1.0,
986
+ "grad_norm": 0.44387468527179835,
987
+ "learning_rate": 6.4805344174808986e-06,
988
+ "loss": 0.6713,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 1.0,
993
+ "grad_norm": 0.4224291568526637,
994
+ "learning_rate": 6.4692291923430634e-06,
995
+ "loss": 0.6928,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 1.01,
1000
+ "grad_norm": 0.42342827072921446,
1001
+ "learning_rate": 6.457812351870889e-06,
1002
+ "loss": 0.6925,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 1.02,
1007
+ "grad_norm": 0.4614687139520872,
1008
+ "learning_rate": 6.446284325231132e-06,
1009
+ "loss": 0.6804,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 1.01,
1014
+ "grad_norm": 0.4513094113300999,
1015
+ "learning_rate": 6.434645545770116e-06,
1016
+ "loss": 0.649,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 1.01,
1021
+ "grad_norm": 0.46129242006354043,
1022
+ "learning_rate": 6.422896450997434e-06,
1023
+ "loss": 0.6244,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 1.02,
1028
+ "grad_norm": 0.44352477273420793,
1029
+ "learning_rate": 6.411037482569509e-06,
1030
+ "loss": 0.6231,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 1.03,
1035
+ "grad_norm": 0.43347730975194065,
1036
+ "learning_rate": 6.399069086272988e-06,
1037
+ "loss": 0.6163,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 1.03,
1042
+ "grad_norm": 0.5042235757137699,
1043
+ "learning_rate": 6.386991712007985e-06,
1044
+ "loss": 0.6295,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 1.04,
1049
+ "grad_norm": 0.4635765704926019,
1050
+ "learning_rate": 6.374805813771171e-06,
1051
+ "loss": 0.6145,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 1.05,
1056
+ "grad_norm": 0.4672283056367441,
1057
+ "learning_rate": 6.362511849638706e-06,
1058
+ "loss": 0.6248,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 1.05,
1063
+ "grad_norm": 0.44386378239345664,
1064
+ "learning_rate": 6.3501102817490184e-06,
1065
+ "loss": 0.6208,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 1.06,
1070
+ "grad_norm": 0.45014512458671113,
1071
+ "learning_rate": 6.337601576285438e-06,
1072
+ "loss": 0.6241,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 1.07,
1077
+ "grad_norm": 0.47077991205008496,
1078
+ "learning_rate": 6.324986203458665e-06,
1079
+ "loss": 0.637,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 1.08,
1084
+ "grad_norm": 0.43971957336428713,
1085
+ "learning_rate": 6.3122646374891014e-06,
1086
+ "loss": 0.6274,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 1.08,
1091
+ "grad_norm": 0.45398595356146343,
1092
+ "learning_rate": 6.299437356589018e-06,
1093
+ "loss": 0.6172,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 1.09,
1098
+ "grad_norm": 0.4638039927896387,
1099
+ "learning_rate": 6.2865048429445835e-06,
1100
+ "loss": 0.6162,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 1.1,
1105
+ "grad_norm": 0.456884430778857,
1106
+ "learning_rate": 6.273467582697736e-06,
1107
+ "loss": 0.6358,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 1.1,
1112
+ "grad_norm": 0.4513273711536076,
1113
+ "learning_rate": 6.260326065927908e-06,
1114
+ "loss": 0.6256,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 1.11,
1119
+ "grad_norm": 0.4585546365167011,
1120
+ "learning_rate": 6.247080786633608e-06,
1121
+ "loss": 0.6343,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 1.12,
1126
+ "grad_norm": 0.4837809920582229,
1127
+ "learning_rate": 6.233732242713847e-06,
1128
+ "loss": 0.6205,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 1.13,
1133
+ "grad_norm": 0.45062031874118463,
1134
+ "learning_rate": 6.220280935949423e-06,
1135
+ "loss": 0.6181,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 1.13,
1140
+ "grad_norm": 0.4934582241182996,
1141
+ "learning_rate": 6.206727371984055e-06,
1142
+ "loss": 0.6101,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 1.14,
1147
+ "grad_norm": 0.45848465100131724,
1148
+ "learning_rate": 6.193072060305386e-06,
1149
+ "loss": 0.6274,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 1.15,
1154
+ "grad_norm": 0.49225379713590917,
1155
+ "learning_rate": 6.17931551422582e-06,
1156
+ "loss": 0.6287,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 1.15,
1161
+ "grad_norm": 0.43783738072351636,
1162
+ "learning_rate": 6.165458250863233e-06,
1163
+ "loss": 0.6322,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 1.16,
1168
+ "grad_norm": 0.45111919610212603,
1169
+ "learning_rate": 6.15150079112153e-06,
1170
+ "loss": 0.6343,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 1.17,
1175
+ "grad_norm": 0.7283719867926337,
1176
+ "learning_rate": 6.137443659671066e-06,
1177
+ "loss": 0.6245,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 1.18,
1182
+ "grad_norm": 0.4317614230374671,
1183
+ "learning_rate": 6.123287384928924e-06,
1184
+ "loss": 0.6252,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 1.18,
1189
+ "grad_norm": 0.43630742763076885,
1190
+ "learning_rate": 6.1090324990390505e-06,
1191
+ "loss": 0.6281,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 1.19,
1196
+ "grad_norm": 0.49179102646470696,
1197
+ "learning_rate": 6.09467953785225e-06,
1198
+ "loss": 0.6304,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 1.2,
1203
+ "grad_norm": 0.4269421327683836,
1204
+ "learning_rate": 6.080229040906045e-06,
1205
+ "loss": 0.6205,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 1.2,
1210
+ "grad_norm": 0.44873848635658836,
1211
+ "learning_rate": 6.065681551404392e-06,
1212
+ "loss": 0.6203,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 1.21,
1217
+ "grad_norm": 0.43522811508044484,
1218
+ "learning_rate": 6.051037616197267e-06,
1219
+ "loss": 0.6233,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 1.22,
1224
+ "grad_norm": 0.43363424076560303,
1225
+ "learning_rate": 6.036297785760099e-06,
1226
+ "loss": 0.6274,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 1.23,
1231
+ "grad_norm": 0.4420787259752861,
1232
+ "learning_rate": 6.0214626141730895e-06,
1233
+ "loss": 0.6388,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 1.23,
1238
+ "grad_norm": 0.445119846862499,
1239
+ "learning_rate": 6.006532659100377e-06,
1240
+ "loss": 0.6107,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 1.24,
1245
+ "grad_norm": 0.4380767674114949,
1246
+ "learning_rate": 5.991508481769071e-06,
1247
+ "loss": 0.6341,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 1.25,
1252
+ "grad_norm": 0.44003117819419657,
1253
+ "learning_rate": 5.976390646948166e-06,
1254
+ "loss": 0.6344,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 1.25,
1259
+ "grad_norm": 0.45806509086322245,
1260
+ "learning_rate": 5.961179722927302e-06,
1261
+ "loss": 0.6283,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 1.26,
1266
+ "grad_norm": 0.4545928600817147,
1267
+ "learning_rate": 5.9458762814954016e-06,
1268
+ "loss": 0.6254,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 1.27,
1273
+ "grad_norm": 0.4438181707408447,
1274
+ "learning_rate": 5.930480897919185e-06,
1275
+ "loss": 0.631,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 1.28,
1280
+ "grad_norm": 0.44695115171581695,
1281
+ "learning_rate": 5.9149941509215366e-06,
1282
+ "loss": 0.6338,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 1.28,
1287
+ "grad_norm": 0.4280430227739119,
1288
+ "learning_rate": 5.899416622659754e-06,
1289
+ "loss": 0.6182,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 1.29,
1294
+ "grad_norm": 0.458726186518369,
1295
+ "learning_rate": 5.883748898703666e-06,
1296
+ "loss": 0.6162,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 1.3,
1301
+ "grad_norm": 0.43445566304338457,
1302
+ "learning_rate": 5.8679915680136155e-06,
1303
+ "loss": 0.6228,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 1.3,
1308
+ "grad_norm": 0.44895947980462597,
1309
+ "learning_rate": 5.852145222918326e-06,
1310
+ "loss": 0.6373,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 1.31,
1315
+ "grad_norm": 0.43403817083393664,
1316
+ "learning_rate": 5.83621045909263e-06,
1317
+ "loss": 0.6376,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 1.32,
1322
+ "grad_norm": 0.4673939224968789,
1323
+ "learning_rate": 5.820187875535083e-06,
1324
+ "loss": 0.6215,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 1.33,
1329
+ "grad_norm": 0.46323588428022766,
1330
+ "learning_rate": 5.804078074545439e-06,
1331
+ "loss": 0.6187,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 1.33,
1336
+ "grad_norm": 0.4530033509696719,
1337
+ "learning_rate": 5.7878816617020204e-06,
1338
+ "loss": 0.6239,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 1.34,
1343
+ "grad_norm": 0.4317929663828983,
1344
+ "learning_rate": 5.771599245838943e-06,
1345
+ "loss": 0.6168,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 1.35,
1350
+ "grad_norm": 0.436592310414347,
1351
+ "learning_rate": 5.7552314390232364e-06,
1352
+ "loss": 0.6179,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 1.35,
1357
+ "grad_norm": 0.4702835623046126,
1358
+ "learning_rate": 5.738778856531832e-06,
1359
+ "loss": 0.6272,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 1.36,
1364
+ "grad_norm": 0.4619318889613922,
1365
+ "learning_rate": 5.72224211682844e-06,
1366
+ "loss": 0.6256,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 1.37,
1371
+ "grad_norm": 0.49429029776316813,
1372
+ "learning_rate": 5.705621841540292e-06,
1373
+ "loss": 0.6283,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 1.37,
1378
+ "grad_norm": 0.47054367378052575,
1379
+ "learning_rate": 5.688918655434783e-06,
1380
+ "loss": 0.6156,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 1.38,
1385
+ "grad_norm": 0.45638233691668284,
1386
+ "learning_rate": 5.67213318639598e-06,
1387
+ "loss": 0.6257,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 1.39,
1392
+ "grad_norm": 0.43819489071261747,
1393
+ "learning_rate": 5.655266065401021e-06,
1394
+ "loss": 0.6255,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 1.4,
1399
+ "grad_norm": 0.45603698357049277,
1400
+ "learning_rate": 5.638317926496398e-06,
1401
+ "loss": 0.6267,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 1.4,
1406
+ "grad_norm": 0.45518318702227223,
1407
+ "learning_rate": 5.6212894067741176e-06,
1408
+ "loss": 0.6357,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 1.41,
1413
+ "grad_norm": 0.4402683023420712,
1414
+ "learning_rate": 5.604181146347758e-06,
1415
+ "loss": 0.6311,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 1.42,
1420
+ "grad_norm": 0.4498808898227514,
1421
+ "learning_rate": 5.5869937883284065e-06,
1422
+ "loss": 0.6213,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 1.42,
1427
+ "grad_norm": 0.46040698115780887,
1428
+ "learning_rate": 5.569727978800478e-06,
1429
+ "loss": 0.6223,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 1.43,
1434
+ "grad_norm": 0.44168864627397236,
1435
+ "learning_rate": 5.552384366797435e-06,
1436
+ "loss": 0.6268,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 1.44,
1441
+ "grad_norm": 0.45494321235524204,
1442
+ "learning_rate": 5.534963604277388e-06,
1443
+ "loss": 0.6193,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 1.45,
1448
+ "grad_norm": 0.44543538788588954,
1449
+ "learning_rate": 5.517466346098587e-06,
1450
+ "loss": 0.6311,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 1.45,
1455
+ "grad_norm": 0.45370006917207745,
1456
+ "learning_rate": 5.4998932499948055e-06,
1457
+ "loss": 0.6263,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 1.46,
1462
+ "grad_norm": 0.4457705866746906,
1463
+ "learning_rate": 5.482244976550616e-06,
1464
+ "loss": 0.6267,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 1.47,
1469
+ "grad_norm": 0.44178347775287935,
1470
+ "learning_rate": 5.464522189176559e-06,
1471
+ "loss": 0.6168,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 1.47,
1476
+ "grad_norm": 0.4510685099498634,
1477
+ "learning_rate": 5.446725554084202e-06,
1478
+ "loss": 0.6071,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 1.48,
1483
+ "grad_norm": 0.4463056440103558,
1484
+ "learning_rate": 5.4288557402611e-06,
1485
+ "loss": 0.6193,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 1.49,
1490
+ "grad_norm": 0.4450825773000299,
1491
+ "learning_rate": 5.410913419445647e-06,
1492
+ "loss": 0.6114,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 1.5,
1497
+ "grad_norm": 0.4609214677792106,
1498
+ "learning_rate": 5.3928992661018194e-06,
1499
+ "loss": 0.6255,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 1.5,
1504
+ "grad_norm": 0.48687583594807843,
1505
+ "learning_rate": 5.374813957393832e-06,
1506
+ "loss": 0.6286,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 1.51,
1511
+ "grad_norm": 0.47549284042607015,
1512
+ "learning_rate": 5.356658173160674e-06,
1513
+ "loss": 0.6143,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 1.52,
1518
+ "grad_norm": 0.49532165280916113,
1519
+ "learning_rate": 5.338432595890562e-06,
1520
+ "loss": 0.6249,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 1.52,
1525
+ "grad_norm": 0.45253915740067313,
1526
+ "learning_rate": 5.320137910695275e-06,
1527
+ "loss": 0.6257,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 1.53,
1532
+ "grad_norm": 0.43721435814923637,
1533
+ "learning_rate": 5.301774805284408e-06,
1534
+ "loss": 0.6178,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 1.54,
1539
+ "grad_norm": 0.4683301857922748,
1540
+ "learning_rate": 5.2833439699395175e-06,
1541
+ "loss": 0.6173,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 1.55,
1546
+ "grad_norm": 0.43871464981194036,
1547
+ "learning_rate": 5.264846097488175e-06,
1548
+ "loss": 0.6214,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 1.55,
1553
+ "grad_norm": 0.4524085111628937,
1554
+ "learning_rate": 5.246281883277922e-06,
1555
+ "loss": 0.6346,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 1.56,
1560
+ "grad_norm": 0.4468406698869542,
1561
+ "learning_rate": 5.227652025150132e-06,
1562
+ "loss": 0.614,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 1.57,
1567
+ "grad_norm": 0.468252187542662,
1568
+ "learning_rate": 5.208957223413776e-06,
1569
+ "loss": 0.6057,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 1.57,
1574
+ "grad_norm": 0.46458186348478814,
1575
+ "learning_rate": 5.1901981808191e-06,
1576
+ "loss": 0.6192,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 1.58,
1581
+ "grad_norm": 0.4589397282179608,
1582
+ "learning_rate": 5.1713756025312095e-06,
1583
+ "loss": 0.6197,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 1.59,
1588
+ "grad_norm": 0.4733441471283767,
1589
+ "learning_rate": 5.1524901961035555e-06,
1590
+ "loss": 0.6146,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 1.6,
1595
+ "grad_norm": 0.49573981085967583,
1596
+ "learning_rate": 5.1335426714513436e-06,
1597
+ "loss": 0.6205,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 1.6,
1602
+ "grad_norm": 0.45753588591278177,
1603
+ "learning_rate": 5.114533740824848e-06,
1604
+ "loss": 0.6194,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 1.61,
1609
+ "grad_norm": 0.44981584915327405,
1610
+ "learning_rate": 5.095464118782631e-06,
1611
+ "loss": 0.6285,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 1.62,
1616
+ "grad_norm": 0.44941448245640475,
1617
+ "learning_rate": 5.076334522164687e-06,
1618
+ "loss": 0.6183,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 1.62,
1623
+ "grad_norm": 0.46348841235648264,
1624
+ "learning_rate": 5.057145670065498e-06,
1625
+ "loss": 0.6178,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 1.63,
1630
+ "grad_norm": 0.4819885899523623,
1631
+ "learning_rate": 5.037898283806995e-06,
1632
+ "loss": 0.6209,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 1.64,
1637
+ "grad_norm": 0.45974762343297226,
1638
+ "learning_rate": 5.018593086911453e-06,
1639
+ "loss": 0.6144,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 1.65,
1644
+ "grad_norm": 0.4832719455105882,
1645
+ "learning_rate": 4.999230805074284e-06,
1646
+ "loss": 0.6255,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 1.65,
1651
+ "grad_norm": 0.4580501245903807,
1652
+ "learning_rate": 4.979812166136764e-06,
1653
+ "loss": 0.622,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 1.66,
1658
+ "grad_norm": 0.4869292416366864,
1659
+ "learning_rate": 4.960337900058668e-06,
1660
+ "loss": 0.6295,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 1.67,
1665
+ "grad_norm": 0.44734991176527494,
1666
+ "learning_rate": 4.940808738890834e-06,
1667
+ "loss": 0.61,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 1.67,
1672
+ "grad_norm": 0.4836741219786191,
1673
+ "learning_rate": 4.921225416747647e-06,
1674
+ "loss": 0.6131,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 1.68,
1679
+ "grad_norm": 0.43868937063180397,
1680
+ "learning_rate": 4.901588669779433e-06,
1681
+ "loss": 0.6261,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 1.69,
1686
+ "grad_norm": 0.4549440779907735,
1687
+ "learning_rate": 4.881899236144797e-06,
1688
+ "loss": 0.6216,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 1.69,
1693
+ "grad_norm": 0.4561309327019534,
1694
+ "learning_rate": 4.862157855982875e-06,
1695
+ "loss": 0.6262,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 1.7,
1700
+ "grad_norm": 0.4521274007767562,
1701
+ "learning_rate": 4.8423652713855e-06,
1702
+ "loss": 0.6214,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 1.71,
1707
+ "grad_norm": 0.4876373591113174,
1708
+ "learning_rate": 4.822522226369323e-06,
1709
+ "loss": 0.6303,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 1.72,
1714
+ "grad_norm": 0.4403247558369275,
1715
+ "learning_rate": 4.802629466847827e-06,
1716
+ "loss": 0.6236,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 1.72,
1721
+ "grad_norm": 0.4392883872725244,
1722
+ "learning_rate": 4.782687740603308e-06,
1723
+ "loss": 0.6125,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 1.73,
1728
+ "grad_norm": 0.44359149108855517,
1729
+ "learning_rate": 4.762697797258742e-06,
1730
+ "loss": 0.6208,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 1.74,
1735
+ "grad_norm": 0.45892783125410747,
1736
+ "learning_rate": 4.742660388249629e-06,
1737
+ "loss": 0.6146,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 1.74,
1742
+ "grad_norm": 0.46353318895549067,
1743
+ "learning_rate": 4.722576266795729e-06,
1744
+ "loss": 0.6199,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 1.75,
1749
+ "grad_norm": 0.4642990741363008,
1750
+ "learning_rate": 4.702446187872758e-06,
1751
+ "loss": 0.6182,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 1.76,
1756
+ "grad_norm": 0.44827792507065956,
1757
+ "learning_rate": 4.682270908184003e-06,
1758
+ "loss": 0.6246,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 1.77,
1763
+ "grad_norm": 0.45544933714150454,
1764
+ "learning_rate": 4.662051186131876e-06,
1765
+ "loss": 0.6256,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 1.77,
1770
+ "grad_norm": 0.4485500362120205,
1771
+ "learning_rate": 4.641787781789412e-06,
1772
+ "loss": 0.6181,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 1.78,
1777
+ "grad_norm": 0.42631048877270405,
1778
+ "learning_rate": 4.6214814568716894e-06,
1779
+ "loss": 0.6331,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 1.79,
1784
+ "grad_norm": 0.4714279586473698,
1785
+ "learning_rate": 4.601132974707202e-06,
1786
+ "loss": 0.628,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 1.79,
1791
+ "grad_norm": 0.4228608375782349,
1792
+ "learning_rate": 4.5807431002091605e-06,
1793
+ "loss": 0.6054,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 1.8,
1798
+ "grad_norm": 0.46872660848782277,
1799
+ "learning_rate": 4.560312599846746e-06,
1800
+ "loss": 0.6102,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 1.81,
1805
+ "grad_norm": 0.4379038714391558,
1806
+ "learning_rate": 4.539842241616287e-06,
1807
+ "loss": 0.6143,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 1.82,
1812
+ "grad_norm": 0.4719919574560488,
1813
+ "learning_rate": 4.519332795012404e-06,
1814
+ "loss": 0.6197,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 1.82,
1819
+ "grad_norm": 0.4560470541146194,
1820
+ "learning_rate": 4.498785030999068e-06,
1821
+ "loss": 0.6132,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 1.83,
1826
+ "grad_norm": 0.48502107778992737,
1827
+ "learning_rate": 4.478199721980633e-06,
1828
+ "loss": 0.631,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 1.84,
1833
+ "grad_norm": 0.45288928959662245,
1834
+ "learning_rate": 4.457577641772792e-06,
1835
+ "loss": 0.6148,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 1.84,
1840
+ "grad_norm": 0.45740004712492455,
1841
+ "learning_rate": 4.436919565573495e-06,
1842
+ "loss": 0.613,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 1.85,
1847
+ "grad_norm": 0.4680089016865197,
1848
+ "learning_rate": 4.416226269933802e-06,
1849
+ "loss": 0.6109,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 1.86,
1854
+ "grad_norm": 0.4498754217059588,
1855
+ "learning_rate": 4.395498532728697e-06,
1856
+ "loss": 0.627,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 1.87,
1861
+ "grad_norm": 0.490510820257092,
1862
+ "learning_rate": 4.374737133127847e-06,
1863
+ "loss": 0.6287,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 1.87,
1868
+ "grad_norm": 0.4384793154811805,
1869
+ "learning_rate": 4.35394285156631e-06,
1870
+ "loss": 0.6265,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 1.88,
1875
+ "grad_norm": 0.42053564372682345,
1876
+ "learning_rate": 4.3331164697151995e-06,
1877
+ "loss": 0.6123,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 1.89,
1882
+ "grad_norm": 0.44499220286710817,
1883
+ "learning_rate": 4.3122587704523015e-06,
1884
+ "loss": 0.6196,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 1.89,
1889
+ "grad_norm": 0.4681953108721627,
1890
+ "learning_rate": 4.291370537832641e-06,
1891
+ "loss": 0.6301,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 1.9,
1896
+ "grad_norm": 0.4245150987038812,
1897
+ "learning_rate": 4.2704525570590185e-06,
1898
+ "loss": 0.6203,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 1.91,
1903
+ "grad_norm": 0.4738423212960381,
1904
+ "learning_rate": 4.2495056144524824e-06,
1905
+ "loss": 0.6159,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 1.92,
1910
+ "grad_norm": 0.49926406862961464,
1911
+ "learning_rate": 4.228530497422779e-06,
1912
+ "loss": 0.6193,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 1.92,
1917
+ "grad_norm": 0.4423739374256911,
1918
+ "learning_rate": 4.207527994438748e-06,
1919
+ "loss": 0.617,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 1.93,
1924
+ "grad_norm": 0.44692873617751755,
1925
+ "learning_rate": 4.186498894998689e-06,
1926
+ "loss": 0.6135,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 1.94,
1931
+ "grad_norm": 0.4358994979972626,
1932
+ "learning_rate": 4.165443989600678e-06,
1933
+ "loss": 0.6121,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 1.94,
1938
+ "grad_norm": 0.46452930431844286,
1939
+ "learning_rate": 4.144364069712854e-06,
1940
+ "loss": 0.6167,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 1.95,
1945
+ "grad_norm": 0.4816111574015236,
1946
+ "learning_rate": 4.123259927743669e-06,
1947
+ "loss": 0.6203,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 1.96,
1952
+ "grad_norm": 0.45232518080467465,
1953
+ "learning_rate": 4.102132357012098e-06,
1954
+ "loss": 0.6199,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 1.97,
1959
+ "grad_norm": 0.45515782747165817,
1960
+ "learning_rate": 4.08098215171782e-06,
1961
+ "loss": 0.6174,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 1.97,
1966
+ "grad_norm": 0.44933646029392305,
1967
+ "learning_rate": 4.059810106911363e-06,
1968
+ "loss": 0.6188,
1969
+ "step": 2800
1970
+ },
1971
+ {
1972
+ "epoch": 1.98,
1973
+ "grad_norm": 0.45633219759975596,
1974
+ "learning_rate": 4.038617018464217e-06,
1975
+ "loss": 0.6168,
1976
+ "step": 2810
1977
+ },
1978
+ {
1979
+ "epoch": 1.99,
1980
+ "grad_norm": 0.4663774750339656,
1981
+ "learning_rate": 4.017403683038914e-06,
1982
+ "loss": 0.6199,
1983
+ "step": 2820
1984
+ },
1985
+ {
1986
+ "epoch": 1.99,
1987
+ "grad_norm": 0.4565589400061048,
1988
+ "learning_rate": 3.996170898059087e-06,
1989
+ "loss": 0.6187,
1990
+ "step": 2830
1991
+ },
1992
+ {
1993
+ "epoch": 2.0,
1994
+ "grad_norm": 0.45638098232431645,
1995
+ "learning_rate": 3.97491946167949e-06,
1996
+ "loss": 0.6133,
1997
+ "step": 2840
1998
+ },
1999
+ {
2000
+ "epoch": 2.01,
2001
+ "grad_norm": 0.4330737687010161,
2002
+ "learning_rate": 3.9536501727559956e-06,
2003
+ "loss": 0.6179,
2004
+ "step": 2850
2005
+ },
2006
+ {
2007
+ "epoch": 2.01,
2008
+ "grad_norm": 0.44620897297773393,
2009
+ "learning_rate": 3.932363830815563e-06,
2010
+ "loss": 0.606,
2011
+ "step": 2860
2012
+ },
2013
+ {
2014
+ "epoch": 2.0,
2015
+ "grad_norm": 0.4727298461430969,
2016
+ "learning_rate": 3.911061236026192e-06,
2017
+ "loss": 0.5804,
2018
+ "step": 2870
2019
+ },
2020
+ {
2021
+ "epoch": 2.01,
2022
+ "grad_norm": 0.5332182751767908,
2023
+ "learning_rate": 3.889743189166831e-06,
2024
+ "loss": 0.5552,
2025
+ "step": 2880
2026
+ },
2027
+ {
2028
+ "epoch": 2.02,
2029
+ "grad_norm": 0.471875496548638,
2030
+ "learning_rate": 3.868410491597286e-06,
2031
+ "loss": 0.5467,
2032
+ "step": 2890
2033
+ },
2034
+ {
2035
+ "epoch": 2.02,
2036
+ "grad_norm": 0.4869637805163024,
2037
+ "learning_rate": 3.847063945228094e-06,
2038
+ "loss": 0.5691,
2039
+ "step": 2900
2040
+ },
2041
+ {
2042
+ "epoch": 2.03,
2043
+ "grad_norm": 0.4714418364302173,
2044
+ "learning_rate": 3.825704352490375e-06,
2045
+ "loss": 0.5788,
2046
+ "step": 2910
2047
+ },
2048
+ {
2049
+ "epoch": 2.04,
2050
+ "grad_norm": 0.49636094733662106,
2051
+ "learning_rate": 3.804332516305672e-06,
2052
+ "loss": 0.5583,
2053
+ "step": 2920
2054
+ },
2055
+ {
2056
+ "epoch": 2.05,
2057
+ "grad_norm": 0.48087980189754664,
2058
+ "learning_rate": 3.782949240055768e-06,
2059
+ "loss": 0.5632,
2060
+ "step": 2930
2061
+ },
2062
+ {
2063
+ "epoch": 2.05,
2064
+ "grad_norm": 0.4873147689537464,
2065
+ "learning_rate": 3.7615553275524852e-06,
2066
+ "loss": 0.5602,
2067
+ "step": 2940
2068
+ },
2069
+ {
2070
+ "epoch": 2.06,
2071
+ "grad_norm": 0.4603275098510104,
2072
+ "learning_rate": 3.74015158300747e-06,
2073
+ "loss": 0.5641,
2074
+ "step": 2950
2075
+ },
2076
+ {
2077
+ "epoch": 2.07,
2078
+ "grad_norm": 0.5162191764305892,
2079
+ "learning_rate": 3.7187388110019604e-06,
2080
+ "loss": 0.5628,
2081
+ "step": 2960
2082
+ },
2083
+ {
2084
+ "epoch": 2.07,
2085
+ "grad_norm": 0.49005627074608765,
2086
+ "learning_rate": 3.697317816456546e-06,
2087
+ "loss": 0.559,
2088
+ "step": 2970
2089
+ },
2090
+ {
2091
+ "epoch": 2.08,
2092
+ "grad_norm": 0.4585568665283943,
2093
+ "learning_rate": 3.6758894046009037e-06,
2094
+ "loss": 0.547,
2095
+ "step": 2980
2096
+ },
2097
+ {
2098
+ "epoch": 2.09,
2099
+ "grad_norm": 0.4506260874603515,
2100
+ "learning_rate": 3.6544543809435346e-06,
2101
+ "loss": 0.5433,
2102
+ "step": 2990
2103
+ },
2104
+ {
2105
+ "epoch": 2.1,
2106
+ "grad_norm": 0.46595533436834136,
2107
+ "learning_rate": 3.6330135512414822e-06,
2108
+ "loss": 0.5666,
2109
+ "step": 3000
2110
+ },
2111
+ {
2112
+ "epoch": 2.1,
2113
+ "grad_norm": 0.4690150184503375,
2114
+ "learning_rate": 3.6115677214700397e-06,
2115
+ "loss": 0.5596,
2116
+ "step": 3010
2117
+ },
2118
+ {
2119
+ "epoch": 2.11,
2120
+ "grad_norm": 0.4683369095498927,
2121
+ "learning_rate": 3.5901176977924606e-06,
2122
+ "loss": 0.5458,
2123
+ "step": 3020
2124
+ },
2125
+ {
2126
+ "epoch": 2.12,
2127
+ "grad_norm": 0.4710288608351933,
2128
+ "learning_rate": 3.568664286529646e-06,
2129
+ "loss": 0.5507,
2130
+ "step": 3030
2131
+ },
2132
+ {
2133
+ "epoch": 2.12,
2134
+ "grad_norm": 0.4928542807361932,
2135
+ "learning_rate": 3.5472082941298433e-06,
2136
+ "loss": 0.5665,
2137
+ "step": 3040
2138
+ },
2139
+ {
2140
+ "epoch": 2.13,
2141
+ "grad_norm": 0.4972921543225756,
2142
+ "learning_rate": 3.5257505271383217e-06,
2143
+ "loss": 0.5586,
2144
+ "step": 3050
2145
+ },
2146
+ {
2147
+ "epoch": 2.14,
2148
+ "grad_norm": 0.4855107426051562,
2149
+ "learning_rate": 3.504291792167063e-06,
2150
+ "loss": 0.5615,
2151
+ "step": 3060
2152
+ },
2153
+ {
2154
+ "epoch": 2.15,
2155
+ "grad_norm": 0.4623236179613674,
2156
+ "learning_rate": 3.4828328958644326e-06,
2157
+ "loss": 0.5638,
2158
+ "step": 3070
2159
+ },
2160
+ {
2161
+ "epoch": 2.15,
2162
+ "grad_norm": 0.46028741167647896,
2163
+ "learning_rate": 3.4613746448848622e-06,
2164
+ "loss": 0.5464,
2165
+ "step": 3080
2166
+ },
2167
+ {
2168
+ "epoch": 2.16,
2169
+ "grad_norm": 0.46156508300115645,
2170
+ "learning_rate": 3.439917845858524e-06,
2171
+ "loss": 0.567,
2172
+ "step": 3090
2173
+ },
2174
+ {
2175
+ "epoch": 2.17,
2176
+ "grad_norm": 0.5669489602625127,
2177
+ "learning_rate": 3.418463305361013e-06,
2178
+ "loss": 0.5524,
2179
+ "step": 3100
2180
+ },
2181
+ {
2182
+ "epoch": 2.17,
2183
+ "grad_norm": 0.49099941076825016,
2184
+ "learning_rate": 3.3970118298830207e-06,
2185
+ "loss": 0.5591,
2186
+ "step": 3110
2187
+ },
2188
+ {
2189
+ "epoch": 2.18,
2190
+ "grad_norm": 0.5207064606888653,
2191
+ "learning_rate": 3.3755642258000265e-06,
2192
+ "loss": 0.5538,
2193
+ "step": 3120
2194
+ },
2195
+ {
2196
+ "epoch": 2.19,
2197
+ "grad_norm": 0.4830219809120518,
2198
+ "learning_rate": 3.3541212993419773e-06,
2199
+ "loss": 0.5475,
2200
+ "step": 3130
2201
+ },
2202
+ {
2203
+ "epoch": 2.19,
2204
+ "grad_norm": 0.4801836621711601,
2205
+ "learning_rate": 3.3326838565629895e-06,
2206
+ "loss": 0.5413,
2207
+ "step": 3140
2208
+ },
2209
+ {
2210
+ "epoch": 2.2,
2211
+ "grad_norm": 0.47387958333244534,
2212
+ "learning_rate": 3.31125270331104e-06,
2213
+ "loss": 0.5537,
2214
+ "step": 3150
2215
+ },
2216
+ {
2217
+ "epoch": 2.21,
2218
+ "grad_norm": 0.5090490511350312,
2219
+ "learning_rate": 3.289828645197681e-06,
2220
+ "loss": 0.5567,
2221
+ "step": 3160
2222
+ },
2223
+ {
2224
+ "epoch": 2.22,
2225
+ "grad_norm": 0.5286353188714713,
2226
+ "learning_rate": 3.2684124875677518e-06,
2227
+ "loss": 0.5589,
2228
+ "step": 3170
2229
+ },
2230
+ {
2231
+ "epoch": 2.22,
2232
+ "grad_norm": 0.4927074981163475,
2233
+ "learning_rate": 3.247005035469109e-06,
2234
+ "loss": 0.5697,
2235
+ "step": 3180
2236
+ },
2237
+ {
2238
+ "epoch": 2.23,
2239
+ "grad_norm": 0.47340856305327644,
2240
+ "learning_rate": 3.2256070936223603e-06,
2241
+ "loss": 0.5687,
2242
+ "step": 3190
2243
+ },
2244
+ {
2245
+ "epoch": 2.24,
2246
+ "grad_norm": 0.5115028667136483,
2247
+ "learning_rate": 3.2042194663906193e-06,
2248
+ "loss": 0.5625,
2249
+ "step": 3200
2250
+ },
2251
+ {
2252
+ "epoch": 2.24,
2253
+ "grad_norm": 0.4723602653535651,
2254
+ "learning_rate": 3.182842957749263e-06,
2255
+ "loss": 0.5633,
2256
+ "step": 3210
2257
+ },
2258
+ {
2259
+ "epoch": 2.25,
2260
+ "grad_norm": 0.4679538952450783,
2261
+ "learning_rate": 3.1614783712557156e-06,
2262
+ "loss": 0.5572,
2263
+ "step": 3220
2264
+ },
2265
+ {
2266
+ "epoch": 2.26,
2267
+ "grad_norm": 0.48051919166640805,
2268
+ "learning_rate": 3.1401265100192383e-06,
2269
+ "loss": 0.5648,
2270
+ "step": 3230
2271
+ },
2272
+ {
2273
+ "epoch": 2.27,
2274
+ "grad_norm": 0.4594423765819446,
2275
+ "learning_rate": 3.1187881766707425e-06,
2276
+ "loss": 0.5595,
2277
+ "step": 3240
2278
+ },
2279
+ {
2280
+ "epoch": 2.27,
2281
+ "grad_norm": 0.49220125939314296,
2282
+ "learning_rate": 3.0974641733326154e-06,
2283
+ "loss": 0.5479,
2284
+ "step": 3250
2285
+ },
2286
+ {
2287
+ "epoch": 2.28,
2288
+ "grad_norm": 0.4944265110257382,
2289
+ "learning_rate": 3.0761553015885717e-06,
2290
+ "loss": 0.5502,
2291
+ "step": 3260
2292
+ },
2293
+ {
2294
+ "epoch": 2.29,
2295
+ "grad_norm": 0.495744161270211,
2296
+ "learning_rate": 3.0548623624535165e-06,
2297
+ "loss": 0.5629,
2298
+ "step": 3270
2299
+ },
2300
+ {
2301
+ "epoch": 2.29,
2302
+ "grad_norm": 0.478561888744776,
2303
+ "learning_rate": 3.0335861563434403e-06,
2304
+ "loss": 0.5597,
2305
+ "step": 3280
2306
+ },
2307
+ {
2308
+ "epoch": 2.3,
2309
+ "grad_norm": 0.4946624980435279,
2310
+ "learning_rate": 3.012327483045325e-06,
2311
+ "loss": 0.556,
2312
+ "step": 3290
2313
+ },
2314
+ {
2315
+ "epoch": 2.31,
2316
+ "grad_norm": 0.4913013156645444,
2317
+ "learning_rate": 2.9910871416870855e-06,
2318
+ "loss": 0.5638,
2319
+ "step": 3300
2320
+ },
2321
+ {
2322
+ "epoch": 2.32,
2323
+ "grad_norm": 0.46629667333688474,
2324
+ "learning_rate": 2.9698659307075224e-06,
2325
+ "loss": 0.5508,
2326
+ "step": 3310
2327
+ },
2328
+ {
2329
+ "epoch": 2.32,
2330
+ "grad_norm": 0.47577400823898375,
2331
+ "learning_rate": 2.948664647826318e-06,
2332
+ "loss": 0.5518,
2333
+ "step": 3320
2334
+ },
2335
+ {
2336
+ "epoch": 2.33,
2337
+ "grad_norm": 0.48528006049817207,
2338
+ "learning_rate": 2.9274840900140375e-06,
2339
+ "loss": 0.5582,
2340
+ "step": 3330
2341
+ },
2342
+ {
2343
+ "epoch": 2.34,
2344
+ "grad_norm": 0.5499143301618472,
2345
+ "learning_rate": 2.906325053462181e-06,
2346
+ "loss": 0.548,
2347
+ "step": 3340
2348
+ },
2349
+ {
2350
+ "epoch": 2.34,
2351
+ "grad_norm": 0.4772816560553211,
2352
+ "learning_rate": 2.8851883335532496e-06,
2353
+ "loss": 0.5523,
2354
+ "step": 3350
2355
+ },
2356
+ {
2357
+ "epoch": 2.35,
2358
+ "grad_norm": 0.49887071761697505,
2359
+ "learning_rate": 2.8640747248308445e-06,
2360
+ "loss": 0.5544,
2361
+ "step": 3360
2362
+ },
2363
+ {
2364
+ "epoch": 2.36,
2365
+ "grad_norm": 0.4853842631362592,
2366
+ "learning_rate": 2.8429850209698053e-06,
2367
+ "loss": 0.5558,
2368
+ "step": 3370
2369
+ },
2370
+ {
2371
+ "epoch": 2.37,
2372
+ "grad_norm": 0.45895465861964546,
2373
+ "learning_rate": 2.8219200147463677e-06,
2374
+ "loss": 0.5598,
2375
+ "step": 3380
2376
+ },
2377
+ {
2378
+ "epoch": 2.37,
2379
+ "grad_norm": 0.4662802877247775,
2380
+ "learning_rate": 2.8008804980083695e-06,
2381
+ "loss": 0.5551,
2382
+ "step": 3390
2383
+ },
2384
+ {
2385
+ "epoch": 2.38,
2386
+ "grad_norm": 0.4881083174435456,
2387
+ "learning_rate": 2.7798672616454785e-06,
2388
+ "loss": 0.5511,
2389
+ "step": 3400
2390
+ },
2391
+ {
2392
+ "epoch": 2.39,
2393
+ "grad_norm": 0.5016617932642891,
2394
+ "learning_rate": 2.75888109555947e-06,
2395
+ "loss": 0.5438,
2396
+ "step": 3410
2397
+ },
2398
+ {
2399
+ "epoch": 2.39,
2400
+ "grad_norm": 0.4831166076149674,
2401
+ "learning_rate": 2.7379227886345244e-06,
2402
+ "loss": 0.5598,
2403
+ "step": 3420
2404
+ },
2405
+ {
2406
+ "epoch": 2.4,
2407
+ "grad_norm": 0.4953933886035155,
2408
+ "learning_rate": 2.716993128707581e-06,
2409
+ "loss": 0.5609,
2410
+ "step": 3430
2411
+ },
2412
+ {
2413
+ "epoch": 2.41,
2414
+ "grad_norm": 0.503170266490847,
2415
+ "learning_rate": 2.696092902538716e-06,
2416
+ "loss": 0.5488,
2417
+ "step": 3440
2418
+ },
2419
+ {
2420
+ "epoch": 2.42,
2421
+ "grad_norm": 0.5098380667106547,
2422
+ "learning_rate": 2.675222895781574e-06,
2423
+ "loss": 0.5539,
2424
+ "step": 3450
2425
+ },
2426
+ {
2427
+ "epoch": 2.42,
2428
+ "grad_norm": 0.49948084086860606,
2429
+ "learning_rate": 2.6543838929538285e-06,
2430
+ "loss": 0.5581,
2431
+ "step": 3460
2432
+ },
2433
+ {
2434
+ "epoch": 2.43,
2435
+ "grad_norm": 0.4872613273522286,
2436
+ "learning_rate": 2.6335766774076965e-06,
2437
+ "loss": 0.5562,
2438
+ "step": 3470
2439
+ },
2440
+ {
2441
+ "epoch": 2.44,
2442
+ "grad_norm": 0.47926716145131487,
2443
+ "learning_rate": 2.6128020313004875e-06,
2444
+ "loss": 0.5561,
2445
+ "step": 3480
2446
+ },
2447
+ {
2448
+ "epoch": 2.44,
2449
+ "grad_norm": 0.49339314189894584,
2450
+ "learning_rate": 2.592060735565206e-06,
2451
+ "loss": 0.5633,
2452
+ "step": 3490
2453
+ },
2454
+ {
2455
+ "epoch": 2.45,
2456
+ "grad_norm": 0.4888816777932096,
2457
+ "learning_rate": 2.5713535698811926e-06,
2458
+ "loss": 0.5623,
2459
+ "step": 3500
2460
+ },
2461
+ {
2462
+ "epoch": 2.46,
2463
+ "grad_norm": 0.47873225411797143,
2464
+ "learning_rate": 2.550681312644815e-06,
2465
+ "loss": 0.5629,
2466
+ "step": 3510
2467
+ },
2468
+ {
2469
+ "epoch": 2.47,
2470
+ "grad_norm": 0.4985498589688127,
2471
+ "learning_rate": 2.5300447409402104e-06,
2472
+ "loss": 0.5517,
2473
+ "step": 3520
2474
+ },
2475
+ {
2476
+ "epoch": 2.47,
2477
+ "grad_norm": 0.4699404709889953,
2478
+ "learning_rate": 2.509444630510071e-06,
2479
+ "loss": 0.5542,
2480
+ "step": 3530
2481
+ },
2482
+ {
2483
+ "epoch": 2.48,
2484
+ "grad_norm": 0.5471742855253533,
2485
+ "learning_rate": 2.4888817557264883e-06,
2486
+ "loss": 0.5573,
2487
+ "step": 3540
2488
+ },
2489
+ {
2490
+ "epoch": 2.49,
2491
+ "grad_norm": 0.4890601716460387,
2492
+ "learning_rate": 2.468356889561835e-06,
2493
+ "loss": 0.5496,
2494
+ "step": 3550
2495
+ },
2496
+ {
2497
+ "epoch": 2.49,
2498
+ "grad_norm": 0.4884550896007432,
2499
+ "learning_rate": 2.4478708035597206e-06,
2500
+ "loss": 0.5517,
2501
+ "step": 3560
2502
+ },
2503
+ {
2504
+ "epoch": 2.5,
2505
+ "grad_norm": 0.53082092791935,
2506
+ "learning_rate": 2.427424267805977e-06,
2507
+ "loss": 0.5643,
2508
+ "step": 3570
2509
+ },
2510
+ {
2511
+ "epoch": 2.51,
2512
+ "grad_norm": 0.4588900957688972,
2513
+ "learning_rate": 2.407018050899719e-06,
2514
+ "loss": 0.5588,
2515
+ "step": 3580
2516
+ },
2517
+ {
2518
+ "epoch": 2.51,
2519
+ "grad_norm": 0.4930240761419014,
2520
+ "learning_rate": 2.3866529199244454e-06,
2521
+ "loss": 0.5534,
2522
+ "step": 3590
2523
+ },
2524
+ {
2525
+ "epoch": 2.52,
2526
+ "grad_norm": 0.4995410840918172,
2527
+ "learning_rate": 2.36632964041921e-06,
2528
+ "loss": 0.5526,
2529
+ "step": 3600
2530
+ },
2531
+ {
2532
+ "epoch": 2.53,
2533
+ "grad_norm": 0.4889682103736911,
2534
+ "learning_rate": 2.3460489763498393e-06,
2535
+ "loss": 0.5575,
2536
+ "step": 3610
2537
+ },
2538
+ {
2539
+ "epoch": 2.54,
2540
+ "grad_norm": 0.47254332660748083,
2541
+ "learning_rate": 2.3258116900802188e-06,
2542
+ "loss": 0.5641,
2543
+ "step": 3620
2544
+ },
2545
+ {
2546
+ "epoch": 2.54,
2547
+ "grad_norm": 0.5271806756431864,
2548
+ "learning_rate": 2.3056185423436304e-06,
2549
+ "loss": 0.5515,
2550
+ "step": 3630
2551
+ },
2552
+ {
2553
+ "epoch": 2.55,
2554
+ "grad_norm": 0.5014716634327129,
2555
+ "learning_rate": 2.2854702922141627e-06,
2556
+ "loss": 0.5578,
2557
+ "step": 3640
2558
+ },
2559
+ {
2560
+ "epoch": 2.56,
2561
+ "grad_norm": 0.48930981901485066,
2562
+ "learning_rate": 2.265367697078168e-06,
2563
+ "loss": 0.5648,
2564
+ "step": 3650
2565
+ },
2566
+ {
2567
+ "epoch": 2.56,
2568
+ "grad_norm": 0.4822043988267899,
2569
+ "learning_rate": 2.245311512605801e-06,
2570
+ "loss": 0.5554,
2571
+ "step": 3660
2572
+ },
2573
+ {
2574
+ "epoch": 2.57,
2575
+ "grad_norm": 0.4978119631671631,
2576
+ "learning_rate": 2.2253024927226053e-06,
2577
+ "loss": 0.5586,
2578
+ "step": 3670
2579
+ },
2580
+ {
2581
+ "epoch": 2.58,
2582
+ "grad_norm": 0.49756480432664524,
2583
+ "learning_rate": 2.2053413895811764e-06,
2584
+ "loss": 0.5578,
2585
+ "step": 3680
2586
+ },
2587
+ {
2588
+ "epoch": 2.59,
2589
+ "grad_norm": 0.4671920108876918,
2590
+ "learning_rate": 2.1854289535328864e-06,
2591
+ "loss": 0.5557,
2592
+ "step": 3690
2593
+ },
2594
+ {
2595
+ "epoch": 2.59,
2596
+ "grad_norm": 0.513655855548841,
2597
+ "learning_rate": 2.165565933099682e-06,
2598
+ "loss": 0.5589,
2599
+ "step": 3700
2600
+ },
2601
+ {
2602
+ "epoch": 2.6,
2603
+ "grad_norm": 0.46274876339767745,
2604
+ "learning_rate": 2.1457530749459373e-06,
2605
+ "loss": 0.5588,
2606
+ "step": 3710
2607
+ },
2608
+ {
2609
+ "epoch": 2.61,
2610
+ "grad_norm": 0.48340392958868733,
2611
+ "learning_rate": 2.1259911238503988e-06,
2612
+ "loss": 0.5481,
2613
+ "step": 3720
2614
+ },
2615
+ {
2616
+ "epoch": 2.61,
2617
+ "grad_norm": 0.5024001177410511,
2618
+ "learning_rate": 2.1062808226781767e-06,
2619
+ "loss": 0.5604,
2620
+ "step": 3730
2621
+ },
2622
+ {
2623
+ "epoch": 2.62,
2624
+ "grad_norm": 0.4794062865649958,
2625
+ "learning_rate": 2.0866229123528305e-06,
2626
+ "loss": 0.552,
2627
+ "step": 3740
2628
+ },
2629
+ {
2630
+ "epoch": 2.63,
2631
+ "grad_norm": 0.49502474291815657,
2632
+ "learning_rate": 2.0670181318285076e-06,
2633
+ "loss": 0.5526,
2634
+ "step": 3750
2635
+ },
2636
+ {
2637
+ "epoch": 2.64,
2638
+ "grad_norm": 0.4912138589836612,
2639
+ "learning_rate": 2.0474672180621754e-06,
2640
+ "loss": 0.5433,
2641
+ "step": 3760
2642
+ },
2643
+ {
2644
+ "epoch": 2.64,
2645
+ "grad_norm": 0.46287983551015915,
2646
+ "learning_rate": 2.027970905985908e-06,
2647
+ "loss": 0.5607,
2648
+ "step": 3770
2649
+ },
2650
+ {
2651
+ "epoch": 2.65,
2652
+ "grad_norm": 0.4818908530273005,
2653
+ "learning_rate": 2.008529928479269e-06,
2654
+ "loss": 0.5552,
2655
+ "step": 3780
2656
+ },
2657
+ {
2658
+ "epoch": 2.66,
2659
+ "grad_norm": 0.49475825963312386,
2660
+ "learning_rate": 1.9891450163417574e-06,
2661
+ "loss": 0.5473,
2662
+ "step": 3790
2663
+ },
2664
+ {
2665
+ "epoch": 2.66,
2666
+ "grad_norm": 0.5090335613659759,
2667
+ "learning_rate": 1.9698168982653334e-06,
2668
+ "loss": 0.5469,
2669
+ "step": 3800
2670
+ },
2671
+ {
2672
+ "epoch": 2.67,
2673
+ "grad_norm": 0.48712846229296525,
2674
+ "learning_rate": 1.950546300807037e-06,
2675
+ "loss": 0.5526,
2676
+ "step": 3810
2677
+ },
2678
+ {
2679
+ "epoch": 2.68,
2680
+ "grad_norm": 0.5087151308068611,
2681
+ "learning_rate": 1.931333948361664e-06,
2682
+ "loss": 0.563,
2683
+ "step": 3820
2684
+ },
2685
+ {
2686
+ "epoch": 2.69,
2687
+ "grad_norm": 0.4770122954574883,
2688
+ "learning_rate": 1.9121805631345406e-06,
2689
+ "loss": 0.5588,
2690
+ "step": 3830
2691
+ },
2692
+ {
2693
+ "epoch": 2.69,
2694
+ "grad_norm": 0.49875337542296333,
2695
+ "learning_rate": 1.8930868651143776e-06,
2696
+ "loss": 0.5556,
2697
+ "step": 3840
2698
+ },
2699
+ {
2700
+ "epoch": 2.7,
2701
+ "grad_norm": 0.46661280379905284,
2702
+ "learning_rate": 1.8740535720462034e-06,
2703
+ "loss": 0.5518,
2704
+ "step": 3850
2705
+ },
2706
+ {
2707
+ "epoch": 2.71,
2708
+ "grad_norm": 0.49444595207088565,
2709
+ "learning_rate": 1.8550813994043814e-06,
2710
+ "loss": 0.5679,
2711
+ "step": 3860
2712
+ },
2713
+ {
2714
+ "epoch": 2.71,
2715
+ "grad_norm": 0.48381227476419236,
2716
+ "learning_rate": 1.8361710603657162e-06,
2717
+ "loss": 0.5572,
2718
+ "step": 3870
2719
+ },
2720
+ {
2721
+ "epoch": 2.72,
2722
+ "grad_norm": 0.5055312948711096,
2723
+ "learning_rate": 1.8173232657826508e-06,
2724
+ "loss": 0.5538,
2725
+ "step": 3880
2726
+ },
2727
+ {
2728
+ "epoch": 2.73,
2729
+ "grad_norm": 0.4686625212413926,
2730
+ "learning_rate": 1.7985387241565343e-06,
2731
+ "loss": 0.559,
2732
+ "step": 3890
2733
+ },
2734
+ {
2735
+ "epoch": 2.74,
2736
+ "grad_norm": 0.4804255341689684,
2737
+ "learning_rate": 1.7798181416109966e-06,
2738
+ "loss": 0.544,
2739
+ "step": 3900
2740
+ },
2741
+ {
2742
+ "epoch": 2.74,
2743
+ "grad_norm": 0.5090131219052505,
2744
+ "learning_rate": 1.7611622218654e-06,
2745
+ "loss": 0.5565,
2746
+ "step": 3910
2747
+ },
2748
+ {
2749
+ "epoch": 2.75,
2750
+ "grad_norm": 0.4823380469403731,
2751
+ "learning_rate": 1.7425716662083936e-06,
2752
+ "loss": 0.5586,
2753
+ "step": 3920
2754
+ },
2755
+ {
2756
+ "epoch": 2.76,
2757
+ "grad_norm": 0.5039478306212927,
2758
+ "learning_rate": 1.7240471734715416e-06,
2759
+ "loss": 0.5582,
2760
+ "step": 3930
2761
+ },
2762
+ {
2763
+ "epoch": 2.76,
2764
+ "grad_norm": 0.48106143586192984,
2765
+ "learning_rate": 1.7055894400030597e-06,
2766
+ "loss": 0.5527,
2767
+ "step": 3940
2768
+ },
2769
+ {
2770
+ "epoch": 2.77,
2771
+ "grad_norm": 0.4948095621947108,
2772
+ "learning_rate": 1.6871991596416367e-06,
2773
+ "loss": 0.5534,
2774
+ "step": 3950
2775
+ },
2776
+ {
2777
+ "epoch": 2.78,
2778
+ "grad_norm": 0.47985601211032985,
2779
+ "learning_rate": 1.668877023690356e-06,
2780
+ "loss": 0.5514,
2781
+ "step": 3960
2782
+ },
2783
+ {
2784
+ "epoch": 2.79,
2785
+ "grad_norm": 0.5044751224020304,
2786
+ "learning_rate": 1.6506237208907045e-06,
2787
+ "loss": 0.5541,
2788
+ "step": 3970
2789
+ },
2790
+ {
2791
+ "epoch": 2.79,
2792
+ "grad_norm": 0.5080452899508979,
2793
+ "learning_rate": 1.6324399373966833e-06,
2794
+ "loss": 0.5506,
2795
+ "step": 3980
2796
+ },
2797
+ {
2798
+ "epoch": 2.8,
2799
+ "grad_norm": 0.4931986436565961,
2800
+ "learning_rate": 1.6143263567490192e-06,
2801
+ "loss": 0.5736,
2802
+ "step": 3990
2803
+ },
2804
+ {
2805
+ "epoch": 2.81,
2806
+ "grad_norm": 0.4684816221900875,
2807
+ "learning_rate": 1.596283659849464e-06,
2808
+ "loss": 0.556,
2809
+ "step": 4000
2810
+ },
2811
+ {
2812
+ "epoch": 2.81,
2813
+ "grad_norm": 0.4785014812413059,
2814
+ "learning_rate": 1.5783125249352016e-06,
2815
+ "loss": 0.5579,
2816
+ "step": 4010
2817
+ },
2818
+ {
2819
+ "epoch": 2.82,
2820
+ "grad_norm": 0.5116019647376474,
2821
+ "learning_rate": 1.5604136275533513e-06,
2822
+ "loss": 0.5552,
2823
+ "step": 4020
2824
+ },
2825
+ {
2826
+ "epoch": 2.83,
2827
+ "grad_norm": 0.5395436792240803,
2828
+ "learning_rate": 1.5425876405355793e-06,
2829
+ "loss": 0.5384,
2830
+ "step": 4030
2831
+ },
2832
+ {
2833
+ "epoch": 2.83,
2834
+ "grad_norm": 0.4900436595350879,
2835
+ "learning_rate": 1.5248352339727968e-06,
2836
+ "loss": 0.5622,
2837
+ "step": 4040
2838
+ },
2839
+ {
2840
+ "epoch": 2.84,
2841
+ "grad_norm": 0.47513280378884526,
2842
+ "learning_rate": 1.5071570751899785e-06,
2843
+ "loss": 0.5636,
2844
+ "step": 4050
2845
+ },
2846
+ {
2847
+ "epoch": 2.85,
2848
+ "grad_norm": 0.4839906292088417,
2849
+ "learning_rate": 1.4895538287210727e-06,
2850
+ "loss": 0.5527,
2851
+ "step": 4060
2852
+ },
2853
+ {
2854
+ "epoch": 2.86,
2855
+ "grad_norm": 0.5376958097507211,
2856
+ "learning_rate": 1.4720261562840272e-06,
2857
+ "loss": 0.5635,
2858
+ "step": 4070
2859
+ },
2860
+ {
2861
+ "epoch": 2.86,
2862
+ "grad_norm": 0.48771290149288943,
2863
+ "learning_rate": 1.4545747167559066e-06,
2864
+ "loss": 0.564,
2865
+ "step": 4080
2866
+ },
2867
+ {
2868
+ "epoch": 2.87,
2869
+ "grad_norm": 0.4854524808894032,
2870
+ "learning_rate": 1.4372001661481314e-06,
2871
+ "loss": 0.5598,
2872
+ "step": 4090
2873
+ },
2874
+ {
2875
+ "epoch": 2.88,
2876
+ "grad_norm": 0.4700143505212195,
2877
+ "learning_rate": 1.4199031575818126e-06,
2878
+ "loss": 0.5375,
2879
+ "step": 4100
2880
+ },
2881
+ {
2882
+ "epoch": 2.88,
2883
+ "grad_norm": 0.4915439052479703,
2884
+ "learning_rate": 1.4026843412632083e-06,
2885
+ "loss": 0.5548,
2886
+ "step": 4110
2887
+ },
2888
+ {
2889
+ "epoch": 2.89,
2890
+ "grad_norm": 0.4869720592283153,
2891
+ "learning_rate": 1.385544364459273e-06,
2892
+ "loss": 0.5571,
2893
+ "step": 4120
2894
+ },
2895
+ {
2896
+ "epoch": 2.9,
2897
+ "grad_norm": 0.4716126280570366,
2898
+ "learning_rate": 1.3684838714733317e-06,
2899
+ "loss": 0.5516,
2900
+ "step": 4130
2901
+ },
2902
+ {
2903
+ "epoch": 2.91,
2904
+ "grad_norm": 0.4965381533290548,
2905
+ "learning_rate": 1.3515035036208578e-06,
2906
+ "loss": 0.5578,
2907
+ "step": 4140
2908
+ },
2909
+ {
2910
+ "epoch": 2.91,
2911
+ "grad_norm": 0.49674828915458996,
2912
+ "learning_rate": 1.3346038992053705e-06,
2913
+ "loss": 0.5498,
2914
+ "step": 4150
2915
+ },
2916
+ {
2917
+ "epoch": 2.92,
2918
+ "grad_norm": 0.47680857026122736,
2919
+ "learning_rate": 1.3177856934944328e-06,
2920
+ "loss": 0.5531,
2921
+ "step": 4160
2922
+ },
2923
+ {
2924
+ "epoch": 2.93,
2925
+ "grad_norm": 0.4870948629881832,
2926
+ "learning_rate": 1.3010495186957768e-06,
2927
+ "loss": 0.552,
2928
+ "step": 4170
2929
+ },
2930
+ {
2931
+ "epoch": 2.93,
2932
+ "grad_norm": 0.483089196852953,
2933
+ "learning_rate": 1.2843960039335355e-06,
2934
+ "loss": 0.5564,
2935
+ "step": 4180
2936
+ },
2937
+ {
2938
+ "epoch": 2.94,
2939
+ "grad_norm": 0.5140997811965615,
2940
+ "learning_rate": 1.2678257752245992e-06,
2941
+ "loss": 0.5504,
2942
+ "step": 4190
2943
+ },
2944
+ {
2945
+ "epoch": 2.95,
2946
+ "grad_norm": 0.4779902409617231,
2947
+ "learning_rate": 1.2513394554550753e-06,
2948
+ "loss": 0.5478,
2949
+ "step": 4200
2950
+ },
2951
+ {
2952
+ "epoch": 2.96,
2953
+ "grad_norm": 0.47680861915825756,
2954
+ "learning_rate": 1.2349376643568792e-06,
2955
+ "loss": 0.5555,
2956
+ "step": 4210
2957
+ },
2958
+ {
2959
+ "epoch": 2.96,
2960
+ "grad_norm": 0.47618772244534097,
2961
+ "learning_rate": 1.218621018484434e-06,
2962
+ "loss": 0.5509,
2963
+ "step": 4220
2964
+ },
2965
+ {
2966
+ "epoch": 2.97,
2967
+ "grad_norm": 0.46991117646305874,
2968
+ "learning_rate": 1.202390131191501e-06,
2969
+ "loss": 0.5572,
2970
+ "step": 4230
2971
+ },
2972
+ {
2973
+ "epoch": 2.98,
2974
+ "grad_norm": 0.48145576248836425,
2975
+ "learning_rate": 1.1862456126081136e-06,
2976
+ "loss": 0.562,
2977
+ "step": 4240
2978
+ },
2979
+ {
2980
+ "epoch": 2.98,
2981
+ "grad_norm": 0.49862994419451123,
2982
+ "learning_rate": 1.170188069617649e-06,
2983
+ "loss": 0.5574,
2984
+ "step": 4250
2985
+ },
2986
+ {
2987
+ "epoch": 2.99,
2988
+ "grad_norm": 0.5025682535998525,
2989
+ "learning_rate": 1.1542181058340122e-06,
2990
+ "loss": 0.5569,
2991
+ "step": 4260
2992
+ },
2993
+ {
2994
+ "epoch": 3.0,
2995
+ "grad_norm": 0.47850092658350835,
2996
+ "learning_rate": 1.1383363215789488e-06,
2997
+ "loss": 0.5543,
2998
+ "step": 4270
2999
+ },
3000
+ {
3001
+ "epoch": 3.01,
3002
+ "grad_norm": 0.5044422425999335,
3003
+ "learning_rate": 1.1225433138594741e-06,
3004
+ "loss": 0.5599,
3005
+ "step": 4280
3006
+ },
3007
+ {
3008
+ "epoch": 3.01,
3009
+ "grad_norm": 0.47419325850109234,
3010
+ "learning_rate": 1.1068396763454339e-06,
3011
+ "loss": 0.5586,
3012
+ "step": 4290
3013
+ },
3014
+ {
3015
+ "epoch": 3.0,
3016
+ "grad_norm": 0.560597143802205,
3017
+ "learning_rate": 1.0912259993471857e-06,
3018
+ "loss": 0.5524,
3019
+ "step": 4300
3020
+ },
3021
+ {
3022
+ "epoch": 3.01,
3023
+ "grad_norm": 0.5148468793364267,
3024
+ "learning_rate": 1.0757028697934152e-06,
3025
+ "loss": 0.5084,
3026
+ "step": 4310
3027
+ },
3028
+ {
3029
+ "epoch": 3.01,
3030
+ "grad_norm": 0.5017714203601242,
3031
+ "learning_rate": 1.060270871209064e-06,
3032
+ "loss": 0.5156,
3033
+ "step": 4320
3034
+ },
3035
+ {
3036
+ "epoch": 3.02,
3037
+ "grad_norm": 0.49357251631602217,
3038
+ "learning_rate": 1.0449305836934003e-06,
3039
+ "loss": 0.5109,
3040
+ "step": 4330
3041
+ },
3042
+ {
3043
+ "epoch": 3.03,
3044
+ "grad_norm": 0.4936913138076729,
3045
+ "learning_rate": 1.02968258389821e-06,
3046
+ "loss": 0.5158,
3047
+ "step": 4340
3048
+ },
3049
+ {
3050
+ "epoch": 3.04,
3051
+ "grad_norm": 0.5049259973539401,
3052
+ "learning_rate": 1.0145274450061254e-06,
3053
+ "loss": 0.5217,
3054
+ "step": 4350
3055
+ },
3056
+ {
3057
+ "epoch": 3.04,
3058
+ "grad_norm": 0.517079836314341,
3059
+ "learning_rate": 9.994657367090686e-07,
3060
+ "loss": 0.5136,
3061
+ "step": 4360
3062
+ },
3063
+ {
3064
+ "epoch": 3.05,
3065
+ "grad_norm": 0.4837364294449262,
3066
+ "learning_rate": 9.844980251868449e-07,
3067
+ "loss": 0.518,
3068
+ "step": 4370
3069
+ },
3070
+ {
3071
+ "epoch": 3.06,
3072
+ "grad_norm": 0.4869343961795407,
3073
+ "learning_rate": 9.696248730858605e-07,
3074
+ "loss": 0.5132,
3075
+ "step": 4380
3076
+ },
3077
+ {
3078
+ "epoch": 3.06,
3079
+ "grad_norm": 0.5085658265111329,
3080
+ "learning_rate": 9.54846839497964e-07,
3081
+ "loss": 0.5165,
3082
+ "step": 4390
3083
+ },
3084
+ {
3085
+ "epoch": 3.07,
3086
+ "grad_norm": 0.47424129042024027,
3087
+ "learning_rate": 9.401644799394382e-07,
3088
+ "loss": 0.5215,
3089
+ "step": 4400
3090
+ },
3091
+ {
3092
+ "epoch": 3.08,
3093
+ "grad_norm": 0.4991885159298539,
3094
+ "learning_rate": 9.255783463301111e-07,
3095
+ "loss": 0.5092,
3096
+ "step": 4410
3097
+ },
3098
+ {
3099
+ "epoch": 3.09,
3100
+ "grad_norm": 0.47972707851164975,
3101
+ "learning_rate": 9.110889869726167e-07,
3102
+ "loss": 0.5289,
3103
+ "step": 4420
3104
+ },
3105
+ {
3106
+ "epoch": 3.09,
3107
+ "grad_norm": 0.48477312158187885,
3108
+ "learning_rate": 8.966969465317753e-07,
3109
+ "loss": 0.5373,
3110
+ "step": 4430
3111
+ },
3112
+ {
3113
+ "epoch": 3.1,
3114
+ "grad_norm": 0.5150113149802942,
3115
+ "learning_rate": 8.824027660141253e-07,
3116
+ "loss": 0.5144,
3117
+ "step": 4440
3118
+ },
3119
+ {
3120
+ "epoch": 3.11,
3121
+ "grad_norm": 0.5012820847152873,
3122
+ "learning_rate": 8.682069827475828e-07,
3123
+ "loss": 0.5232,
3124
+ "step": 4450
3125
+ },
3126
+ {
3127
+ "epoch": 3.11,
3128
+ "grad_norm": 0.536197598669663,
3129
+ "learning_rate": 8.541101303612473e-07,
3130
+ "loss": 0.5312,
3131
+ "step": 4460
3132
+ },
3133
+ {
3134
+ "epoch": 3.12,
3135
+ "grad_norm": 0.47456874746453287,
3136
+ "learning_rate": 8.401127387653379e-07,
3137
+ "loss": 0.5021,
3138
+ "step": 4470
3139
+ },
3140
+ {
3141
+ "epoch": 3.13,
3142
+ "grad_norm": 0.5022494921077733,
3143
+ "learning_rate": 8.262153341312734e-07,
3144
+ "loss": 0.5039,
3145
+ "step": 4480
3146
+ },
3147
+ {
3148
+ "epoch": 3.14,
3149
+ "grad_norm": 0.5128622291867768,
3150
+ "learning_rate": 8.124184388719e-07,
3151
+ "loss": 0.5189,
3152
+ "step": 4490
3153
+ },
3154
+ {
3155
+ "epoch": 3.14,
3156
+ "grad_norm": 0.49970434341288505,
3157
+ "learning_rate": 7.987225716218441e-07,
3158
+ "loss": 0.5266,
3159
+ "step": 4500
3160
+ },
3161
+ {
3162
+ "epoch": 3.15,
3163
+ "grad_norm": 0.4990813361708124,
3164
+ "learning_rate": 7.851282472180222e-07,
3165
+ "loss": 0.5189,
3166
+ "step": 4510
3167
+ },
3168
+ {
3169
+ "epoch": 3.16,
3170
+ "grad_norm": 0.5361324180050252,
3171
+ "learning_rate": 7.716359766802858e-07,
3172
+ "loss": 0.5283,
3173
+ "step": 4520
3174
+ },
3175
+ {
3176
+ "epoch": 3.16,
3177
+ "grad_norm": 0.49325303865409753,
3178
+ "learning_rate": 7.582462671922154e-07,
3179
+ "loss": 0.5134,
3180
+ "step": 4530
3181
+ },
3182
+ {
3183
+ "epoch": 3.17,
3184
+ "grad_norm": 0.5074499214352016,
3185
+ "learning_rate": 7.449596220820492e-07,
3186
+ "loss": 0.5219,
3187
+ "step": 4540
3188
+ },
3189
+ {
3190
+ "epoch": 3.18,
3191
+ "grad_norm": 0.48687866167974014,
3192
+ "learning_rate": 7.317765408037668e-07,
3193
+ "loss": 0.5131,
3194
+ "step": 4550
3195
+ },
3196
+ {
3197
+ "epoch": 3.19,
3198
+ "grad_norm": 0.5209017279406115,
3199
+ "learning_rate": 7.186975189183119e-07,
3200
+ "loss": 0.5263,
3201
+ "step": 4560
3202
+ },
3203
+ {
3204
+ "epoch": 3.19,
3205
+ "grad_norm": 0.5017929271897994,
3206
+ "learning_rate": 7.057230480749689e-07,
3207
+ "loss": 0.5221,
3208
+ "step": 4570
3209
+ },
3210
+ {
3211
+ "epoch": 3.2,
3212
+ "grad_norm": 0.4909543768911595,
3213
+ "learning_rate": 6.928536159928746e-07,
3214
+ "loss": 0.5082,
3215
+ "step": 4580
3216
+ },
3217
+ {
3218
+ "epoch": 3.21,
3219
+ "grad_norm": 0.5217040631589964,
3220
+ "learning_rate": 6.800897064426877e-07,
3221
+ "loss": 0.5136,
3222
+ "step": 4590
3223
+ },
3224
+ {
3225
+ "epoch": 3.21,
3226
+ "grad_norm": 0.5007485735211247,
3227
+ "learning_rate": 6.674317992284038e-07,
3228
+ "loss": 0.5158,
3229
+ "step": 4600
3230
+ },
3231
+ {
3232
+ "epoch": 3.22,
3233
+ "grad_norm": 0.495432605404129,
3234
+ "learning_rate": 6.548803701693218e-07,
3235
+ "loss": 0.5191,
3236
+ "step": 4610
3237
+ },
3238
+ {
3239
+ "epoch": 3.23,
3240
+ "grad_norm": 0.5457479536125451,
3241
+ "learning_rate": 6.424358910821511e-07,
3242
+ "loss": 0.5144,
3243
+ "step": 4620
3244
+ },
3245
+ {
3246
+ "epoch": 3.24,
3247
+ "grad_norm": 0.5106414076169086,
3248
+ "learning_rate": 6.300988297632804e-07,
3249
+ "loss": 0.5288,
3250
+ "step": 4630
3251
+ },
3252
+ {
3253
+ "epoch": 3.24,
3254
+ "grad_norm": 0.5211736668510725,
3255
+ "learning_rate": 6.178696499711915e-07,
3256
+ "loss": 0.5218,
3257
+ "step": 4640
3258
+ },
3259
+ {
3260
+ "epoch": 3.25,
3261
+ "grad_norm": 0.4891406143758845,
3262
+ "learning_rate": 6.057488114090288e-07,
3263
+ "loss": 0.5107,
3264
+ "step": 4650
3265
+ },
3266
+ {
3267
+ "epoch": 3.26,
3268
+ "grad_norm": 0.5178228254981688,
3269
+ "learning_rate": 5.937367697073139e-07,
3270
+ "loss": 0.5004,
3271
+ "step": 4660
3272
+ },
3273
+ {
3274
+ "epoch": 3.26,
3275
+ "grad_norm": 0.49831173988741256,
3276
+ "learning_rate": 5.818339764068217e-07,
3277
+ "loss": 0.5167,
3278
+ "step": 4670
3279
+ },
3280
+ {
3281
+ "epoch": 3.27,
3282
+ "grad_norm": 0.5445792027132667,
3283
+ "learning_rate": 5.700408789416051e-07,
3284
+ "loss": 0.5251,
3285
+ "step": 4680
3286
+ },
3287
+ {
3288
+ "epoch": 3.28,
3289
+ "grad_norm": 0.5412064520692698,
3290
+ "learning_rate": 5.58357920622179e-07,
3291
+ "loss": 0.5185,
3292
+ "step": 4690
3293
+ },
3294
+ {
3295
+ "epoch": 3.28,
3296
+ "grad_norm": 0.5194173017222409,
3297
+ "learning_rate": 5.467855406188503e-07,
3298
+ "loss": 0.5213,
3299
+ "step": 4700
3300
+ },
3301
+ {
3302
+ "epoch": 3.29,
3303
+ "grad_norm": 0.530585691377951,
3304
+ "learning_rate": 5.353241739452134e-07,
3305
+ "loss": 0.5213,
3306
+ "step": 4710
3307
+ },
3308
+ {
3309
+ "epoch": 3.3,
3310
+ "grad_norm": 0.5334266089134705,
3311
+ "learning_rate": 5.239742514417958e-07,
3312
+ "loss": 0.5213,
3313
+ "step": 4720
3314
+ },
3315
+ {
3316
+ "epoch": 3.31,
3317
+ "grad_norm": 0.5323190599173516,
3318
+ "learning_rate": 5.127361997598647e-07,
3319
+ "loss": 0.5173,
3320
+ "step": 4730
3321
+ },
3322
+ {
3323
+ "epoch": 3.31,
3324
+ "grad_norm": 0.4977075988891876,
3325
+ "learning_rate": 5.016104413453866e-07,
3326
+ "loss": 0.5163,
3327
+ "step": 4740
3328
+ },
3329
+ {
3330
+ "epoch": 3.32,
3331
+ "grad_norm": 0.5072133518376746,
3332
+ "learning_rate": 4.905973944231479e-07,
3333
+ "loss": 0.5147,
3334
+ "step": 4750
3335
+ },
3336
+ {
3337
+ "epoch": 3.33,
3338
+ "grad_norm": 0.5089446326634548,
3339
+ "learning_rate": 4.796974729810328e-07,
3340
+ "loss": 0.5206,
3341
+ "step": 4760
3342
+ },
3343
+ {
3344
+ "epoch": 3.33,
3345
+ "grad_norm": 0.5173579821056443,
3346
+ "learning_rate": 4.6891108675446453e-07,
3347
+ "loss": 0.5233,
3348
+ "step": 4770
3349
+ },
3350
+ {
3351
+ "epoch": 3.34,
3352
+ "grad_norm": 0.49509093398735665,
3353
+ "learning_rate": 4.5823864121099967e-07,
3354
+ "loss": 0.5143,
3355
+ "step": 4780
3356
+ },
3357
+ {
3358
+ "epoch": 3.35,
3359
+ "grad_norm": 0.510739525920679,
3360
+ "learning_rate": 4.476805375350865e-07,
3361
+ "loss": 0.5204,
3362
+ "step": 4790
3363
+ },
3364
+ {
3365
+ "epoch": 3.36,
3366
+ "grad_norm": 0.5285640385275354,
3367
+ "learning_rate": 4.372371726129854e-07,
3368
+ "loss": 0.5226,
3369
+ "step": 4800
3370
+ },
3371
+ {
3372
+ "epoch": 3.36,
3373
+ "grad_norm": 0.49804779846917624,
3374
+ "learning_rate": 4.269089390178512e-07,
3375
+ "loss": 0.5257,
3376
+ "step": 4810
3377
+ },
3378
+ {
3379
+ "epoch": 3.37,
3380
+ "grad_norm": 0.4960403523798791,
3381
+ "learning_rate": 4.1669622499497205e-07,
3382
+ "loss": 0.5224,
3383
+ "step": 4820
3384
+ },
3385
+ {
3386
+ "epoch": 3.38,
3387
+ "grad_norm": 0.509776799973484,
3388
+ "learning_rate": 4.0659941444717833e-07,
3389
+ "loss": 0.5153,
3390
+ "step": 4830
3391
+ },
3392
+ {
3393
+ "epoch": 3.38,
3394
+ "grad_norm": 0.48108044641737857,
3395
+ "learning_rate": 3.966188869204094e-07,
3396
+ "loss": 0.5175,
3397
+ "step": 4840
3398
+ },
3399
+ {
3400
+ "epoch": 3.39,
3401
+ "grad_norm": 0.5141883943099625,
3402
+ "learning_rate": 3.8675501758944926e-07,
3403
+ "loss": 0.5147,
3404
+ "step": 4850
3405
+ },
3406
+ {
3407
+ "epoch": 3.4,
3408
+ "grad_norm": 0.5086149236998669,
3409
+ "learning_rate": 3.7700817724381983e-07,
3410
+ "loss": 0.5128,
3411
+ "step": 4860
3412
+ },
3413
+ {
3414
+ "epoch": 3.41,
3415
+ "grad_norm": 0.5107670739104685,
3416
+ "learning_rate": 3.6737873227384263e-07,
3417
+ "loss": 0.5162,
3418
+ "step": 4870
3419
+ },
3420
+ {
3421
+ "epoch": 3.41,
3422
+ "grad_norm": 0.48090817905611477,
3423
+ "learning_rate": 3.578670446568711e-07,
3424
+ "loss": 0.5289,
3425
+ "step": 4880
3426
+ },
3427
+ {
3428
+ "epoch": 3.42,
3429
+ "grad_norm": 0.5149098967385166,
3430
+ "learning_rate": 3.484734719436782e-07,
3431
+ "loss": 0.5224,
3432
+ "step": 4890
3433
+ },
3434
+ {
3435
+ "epoch": 3.43,
3436
+ "grad_norm": 0.4967090096149114,
3437
+ "learning_rate": 3.3919836724501743e-07,
3438
+ "loss": 0.5064,
3439
+ "step": 4900
3440
+ },
3441
+ {
3442
+ "epoch": 3.43,
3443
+ "grad_norm": 0.49198009223776107,
3444
+ "learning_rate": 3.3004207921835004e-07,
3445
+ "loss": 0.526,
3446
+ "step": 4910
3447
+ },
3448
+ {
3449
+ "epoch": 3.44,
3450
+ "grad_norm": 0.5260886992405347,
3451
+ "learning_rate": 3.210049520547388e-07,
3452
+ "loss": 0.5278,
3453
+ "step": 4920
3454
+ },
3455
+ {
3456
+ "epoch": 3.45,
3457
+ "grad_norm": 0.49827609520509064,
3458
+ "learning_rate": 3.1208732546590843e-07,
3459
+ "loss": 0.5269,
3460
+ "step": 4930
3461
+ },
3462
+ {
3463
+ "epoch": 3.46,
3464
+ "grad_norm": 0.5199185251610714,
3465
+ "learning_rate": 3.0328953467147543e-07,
3466
+ "loss": 0.5125,
3467
+ "step": 4940
3468
+ },
3469
+ {
3470
+ "epoch": 3.46,
3471
+ "grad_norm": 0.5165139482645277,
3472
+ "learning_rate": 2.946119103863483e-07,
3473
+ "loss": 0.5095,
3474
+ "step": 4950
3475
+ },
3476
+ {
3477
+ "epoch": 3.47,
3478
+ "grad_norm": 0.48760733590102007,
3479
+ "learning_rate": 2.86054778808296e-07,
3480
+ "loss": 0.5262,
3481
+ "step": 4960
3482
+ },
3483
+ {
3484
+ "epoch": 3.48,
3485
+ "grad_norm": 0.49481920675979196,
3486
+ "learning_rate": 2.7761846160568403e-07,
3487
+ "loss": 0.5209,
3488
+ "step": 4970
3489
+ },
3490
+ {
3491
+ "epoch": 3.48,
3492
+ "grad_norm": 0.5017608349952136,
3493
+ "learning_rate": 2.69303275905384e-07,
3494
+ "loss": 0.5137,
3495
+ "step": 4980
3496
+ },
3497
+ {
3498
+ "epoch": 3.49,
3499
+ "grad_norm": 0.5222144874040826,
3500
+ "learning_rate": 2.611095342808526e-07,
3501
+ "loss": 0.5162,
3502
+ "step": 4990
3503
+ },
3504
+ {
3505
+ "epoch": 3.5,
3506
+ "grad_norm": 0.4928255848647095,
3507
+ "learning_rate": 2.530375447403815e-07,
3508
+ "loss": 0.5176,
3509
+ "step": 5000
3510
+ },
3511
+ {
3512
+ "epoch": 3.51,
3513
+ "grad_norm": 0.530457616289496,
3514
+ "learning_rate": 2.4508761071551906e-07,
3515
+ "loss": 0.5181,
3516
+ "step": 5010
3517
+ },
3518
+ {
3519
+ "epoch": 3.51,
3520
+ "grad_norm": 0.5147706319208548,
3521
+ "learning_rate": 2.3726003104966393e-07,
3522
+ "loss": 0.5095,
3523
+ "step": 5020
3524
+ },
3525
+ {
3526
+ "epoch": 3.52,
3527
+ "grad_norm": 0.523763253857449,
3528
+ "learning_rate": 2.2955509998683214e-07,
3529
+ "loss": 0.5108,
3530
+ "step": 5030
3531
+ },
3532
+ {
3533
+ "epoch": 3.53,
3534
+ "grad_norm": 0.5323084690421006,
3535
+ "learning_rate": 2.2197310716059603e-07,
3536
+ "loss": 0.511,
3537
+ "step": 5040
3538
+ },
3539
+ {
3540
+ "epoch": 3.53,
3541
+ "grad_norm": 0.5088461348117514,
3542
+ "learning_rate": 2.1451433758319543e-07,
3543
+ "loss": 0.5265,
3544
+ "step": 5050
3545
+ },
3546
+ {
3547
+ "epoch": 3.54,
3548
+ "grad_norm": 0.5478220673331649,
3549
+ "learning_rate": 2.0717907163482507e-07,
3550
+ "loss": 0.5112,
3551
+ "step": 5060
3552
+ },
3553
+ {
3554
+ "epoch": 3.55,
3555
+ "grad_norm": 0.5414027895276027,
3556
+ "learning_rate": 1.9996758505309593e-07,
3557
+ "loss": 0.5231,
3558
+ "step": 5070
3559
+ },
3560
+ {
3561
+ "epoch": 3.56,
3562
+ "grad_norm": 0.4983898932091525,
3563
+ "learning_rate": 1.9288014892266753e-07,
3564
+ "loss": 0.5105,
3565
+ "step": 5080
3566
+ },
3567
+ {
3568
+ "epoch": 3.56,
3569
+ "grad_norm": 0.5093531347734784,
3570
+ "learning_rate": 1.8591702966505952e-07,
3571
+ "loss": 0.5127,
3572
+ "step": 5090
3573
+ },
3574
+ {
3575
+ "epoch": 3.57,
3576
+ "grad_norm": 0.677948629367298,
3577
+ "learning_rate": 1.790784890286352e-07,
3578
+ "loss": 0.5219,
3579
+ "step": 5100
3580
+ },
3581
+ {
3582
+ "epoch": 3.58,
3583
+ "grad_norm": 0.5010683504531009,
3584
+ "learning_rate": 1.7236478407876555e-07,
3585
+ "loss": 0.5054,
3586
+ "step": 5110
3587
+ },
3588
+ {
3589
+ "epoch": 3.58,
3590
+ "grad_norm": 0.5179768835662841,
3591
+ "learning_rate": 1.6577616718816123e-07,
3592
+ "loss": 0.5251,
3593
+ "step": 5120
3594
+ },
3595
+ {
3596
+ "epoch": 3.59,
3597
+ "grad_norm": 0.5087954420227027,
3598
+ "learning_rate": 1.5931288602738958e-07,
3599
+ "loss": 0.5137,
3600
+ "step": 5130
3601
+ },
3602
+ {
3603
+ "epoch": 3.6,
3604
+ "grad_norm": 0.5083448366233918,
3605
+ "learning_rate": 1.5297518355556132e-07,
3606
+ "loss": 0.5059,
3607
+ "step": 5140
3608
+ },
3609
+ {
3610
+ "epoch": 3.6,
3611
+ "grad_norm": 0.5170972166302202,
3612
+ "learning_rate": 1.467632980112023e-07,
3613
+ "loss": 0.5214,
3614
+ "step": 5150
3615
+ },
3616
+ {
3617
+ "epoch": 3.61,
3618
+ "grad_norm": 0.5145933451855358,
3619
+ "learning_rate": 1.406774629032923e-07,
3620
+ "loss": 0.511,
3621
+ "step": 5160
3622
+ },
3623
+ {
3624
+ "epoch": 3.62,
3625
+ "grad_norm": 0.5012480980422283,
3626
+ "learning_rate": 1.347179070024903e-07,
3627
+ "loss": 0.5179,
3628
+ "step": 5170
3629
+ },
3630
+ {
3631
+ "epoch": 3.63,
3632
+ "grad_norm": 0.5157422802936725,
3633
+ "learning_rate": 1.2888485433253521e-07,
3634
+ "loss": 0.5193,
3635
+ "step": 5180
3636
+ },
3637
+ {
3638
+ "epoch": 3.63,
3639
+ "grad_norm": 0.5104197669978088,
3640
+ "learning_rate": 1.2317852416182378e-07,
3641
+ "loss": 0.5221,
3642
+ "step": 5190
3643
+ },
3644
+ {
3645
+ "epoch": 3.64,
3646
+ "grad_norm": 0.48689303934415246,
3647
+ "learning_rate": 1.1759913099516816e-07,
3648
+ "loss": 0.5118,
3649
+ "step": 5200
3650
+ },
3651
+ {
3652
+ "epoch": 3.65,
3653
+ "grad_norm": 0.5105879788600957,
3654
+ "learning_rate": 1.1214688456573247e-07,
3655
+ "loss": 0.5178,
3656
+ "step": 5210
3657
+ },
3658
+ {
3659
+ "epoch": 3.65,
3660
+ "grad_norm": 0.4742285263986786,
3661
+ "learning_rate": 1.0682198982714814e-07,
3662
+ "loss": 0.534,
3663
+ "step": 5220
3664
+ },
3665
+ {
3666
+ "epoch": 3.66,
3667
+ "grad_norm": 0.5096564376650945,
3668
+ "learning_rate": 1.0162464694581235e-07,
3669
+ "loss": 0.5272,
3670
+ "step": 5230
3671
+ },
3672
+ {
3673
+ "epoch": 3.67,
3674
+ "grad_norm": 0.5068212494030221,
3675
+ "learning_rate": 9.65550512933605e-08,
3676
+ "loss": 0.5252,
3677
+ "step": 5240
3678
+ },
3679
+ {
3680
+ "epoch": 3.68,
3681
+ "grad_norm": 0.5132873703711879,
3682
+ "learning_rate": 9.16133934393224e-08,
3683
+ "loss": 0.5161,
3684
+ "step": 5250
3685
+ },
3686
+ {
3687
+ "epoch": 3.68,
3688
+ "grad_norm": 0.496214740845792,
3689
+ "learning_rate": 8.67998591439612e-08,
3690
+ "loss": 0.518,
3691
+ "step": 5260
3692
+ },
3693
+ {
3694
+ "epoch": 3.69,
3695
+ "grad_norm": 0.5257117991696062,
3696
+ "learning_rate": 8.21146293512876e-08,
3697
+ "loss": 0.5201,
3698
+ "step": 5270
3699
+ },
3700
+ {
3701
+ "epoch": 3.7,
3702
+ "grad_norm": 0.5038613162646833,
3703
+ "learning_rate": 7.755788018225961e-08,
3704
+ "loss": 0.5439,
3705
+ "step": 5280
3706
+ },
3707
+ {
3708
+ "epoch": 3.7,
3709
+ "grad_norm": 0.5108263338716986,
3710
+ "learning_rate": 7.31297829281617e-08,
3711
+ "loss": 0.5132,
3712
+ "step": 5290
3713
+ },
3714
+ {
3715
+ "epoch": 3.71,
3716
+ "grad_norm": 0.5149498952477054,
3717
+ "learning_rate": 6.883050404416552e-08,
3718
+ "loss": 0.5111,
3719
+ "step": 5300
3720
+ },
3721
+ {
3722
+ "epoch": 3.72,
3723
+ "grad_norm": 0.5047749285108949,
3724
+ "learning_rate": 6.46602051430732e-08,
3725
+ "loss": 0.5307,
3726
+ "step": 5310
3727
+ },
3728
+ {
3729
+ "epoch": 3.73,
3730
+ "grad_norm": 0.5156795764243357,
3731
+ "learning_rate": 6.061904298924253e-08,
3732
+ "loss": 0.5285,
3733
+ "step": 5320
3734
+ },
3735
+ {
3736
+ "epoch": 3.73,
3737
+ "grad_norm": 0.5144201053701509,
3738
+ "learning_rate": 5.670716949269278e-08,
3739
+ "loss": 0.5148,
3740
+ "step": 5330
3741
+ },
3742
+ {
3743
+ "epoch": 3.74,
3744
+ "grad_norm": 0.507394331507882,
3745
+ "learning_rate": 5.2924731703395564e-08,
3746
+ "loss": 0.5206,
3747
+ "step": 5340
3748
+ },
3749
+ {
3750
+ "epoch": 3.75,
3751
+ "grad_norm": 0.48368946217469994,
3752
+ "learning_rate": 4.927187180574666e-08,
3753
+ "loss": 0.526,
3754
+ "step": 5350
3755
+ },
3756
+ {
3757
+ "epoch": 3.75,
3758
+ "grad_norm": 0.5047554925764675,
3759
+ "learning_rate": 4.574872711322103e-08,
3760
+ "loss": 0.5126,
3761
+ "step": 5360
3762
+ },
3763
+ {
3764
+ "epoch": 3.76,
3765
+ "grad_norm": 0.4949463708763226,
3766
+ "learning_rate": 4.2355430063211405e-08,
3767
+ "loss": 0.5204,
3768
+ "step": 5370
3769
+ },
3770
+ {
3771
+ "epoch": 3.77,
3772
+ "grad_norm": 0.5079311960306774,
3773
+ "learning_rate": 3.909210821205017e-08,
3774
+ "loss": 0.5189,
3775
+ "step": 5380
3776
+ },
3777
+ {
3778
+ "epoch": 3.78,
3779
+ "grad_norm": 0.4902741464423996,
3780
+ "learning_rate": 3.595888423021354e-08,
3781
+ "loss": 0.513,
3782
+ "step": 5390
3783
+ },
3784
+ {
3785
+ "epoch": 3.78,
3786
+ "grad_norm": 0.5421885848655773,
3787
+ "learning_rate": 3.295587589771071e-08,
3788
+ "loss": 0.5093,
3789
+ "step": 5400
3790
+ },
3791
+ {
3792
+ "epoch": 3.79,
3793
+ "grad_norm": 0.49756539244831294,
3794
+ "learning_rate": 3.008319609965676e-08,
3795
+ "loss": 0.5144,
3796
+ "step": 5410
3797
+ },
3798
+ {
3799
+ "epoch": 3.8,
3800
+ "grad_norm": 0.5074328229331989,
3801
+ "learning_rate": 2.734095282202942e-08,
3802
+ "loss": 0.5133,
3803
+ "step": 5420
3804
+ },
3805
+ {
3806
+ "epoch": 3.8,
3807
+ "grad_norm": 0.49772891591572227,
3808
+ "learning_rate": 2.4729249147608378e-08,
3809
+ "loss": 0.5251,
3810
+ "step": 5430
3811
+ },
3812
+ {
3813
+ "epoch": 3.81,
3814
+ "grad_norm": 0.5088034449477752,
3815
+ "learning_rate": 2.224818325210237e-08,
3816
+ "loss": 0.5175,
3817
+ "step": 5440
3818
+ },
3819
+ {
3820
+ "epoch": 3.82,
3821
+ "grad_norm": 0.4826584150965653,
3822
+ "learning_rate": 1.9897848400456496e-08,
3823
+ "loss": 0.5141,
3824
+ "step": 5450
3825
+ },
3826
+ {
3827
+ "epoch": 3.83,
3828
+ "grad_norm": 0.5172662799041124,
3829
+ "learning_rate": 1.7678332943348807e-08,
3830
+ "loss": 0.5197,
3831
+ "step": 5460
3832
+ },
3833
+ {
3834
+ "epoch": 3.83,
3835
+ "grad_norm": 0.48940063691629393,
3836
+ "learning_rate": 1.5589720313866794e-08,
3837
+ "loss": 0.5059,
3838
+ "step": 5470
3839
+ },
3840
+ {
3841
+ "epoch": 3.84,
3842
+ "grad_norm": 0.517098264403305,
3843
+ "learning_rate": 1.3632089024371574e-08,
3844
+ "loss": 0.5141,
3845
+ "step": 5480
3846
+ },
3847
+ {
3848
+ "epoch": 3.85,
3849
+ "grad_norm": 0.48979313956431636,
3850
+ "learning_rate": 1.1805512663549345e-08,
3851
+ "loss": 0.5136,
3852
+ "step": 5490
3853
+ },
3854
+ {
3855
+ "epoch": 3.85,
3856
+ "grad_norm": 0.48660701715860905,
3857
+ "learning_rate": 1.0110059893640055e-08,
3858
+ "loss": 0.5212,
3859
+ "step": 5500
3860
+ },
3861
+ {
3862
+ "epoch": 3.86,
3863
+ "grad_norm": 0.4841422308843411,
3864
+ "learning_rate": 8.54579444786152e-09,
3865
+ "loss": 0.5228,
3866
+ "step": 5510
3867
+ },
3868
+ {
3869
+ "epoch": 3.87,
3870
+ "grad_norm": 0.4851052180007293,
3871
+ "learning_rate": 7.112775128009174e-09,
3872
+ "loss": 0.5146,
3873
+ "step": 5520
3874
+ },
3875
+ {
3876
+ "epoch": 3.88,
3877
+ "grad_norm": 0.49400550323274894,
3878
+ "learning_rate": 5.811055802249721e-09,
3879
+ "loss": 0.5277,
3880
+ "step": 5530
3881
+ },
3882
+ {
3883
+ "epoch": 3.88,
3884
+ "grad_norm": 0.512928633478054,
3885
+ "learning_rate": 4.640685403093147e-09,
3886
+ "loss": 0.5216,
3887
+ "step": 5540
3888
+ },
3889
+ {
3890
+ "epoch": 3.89,
3891
+ "grad_norm": 0.48929257944769156,
3892
+ "learning_rate": 3.6017079255547534e-09,
3893
+ "loss": 0.5172,
3894
+ "step": 5550
3895
+ },
3896
+ {
3897
+ "epoch": 3.9,
3898
+ "grad_norm": 0.5049424795736568,
3899
+ "learning_rate": 2.6941624255001904e-09,
3900
+ "loss": 0.5147,
3901
+ "step": 5560
3902
+ },
3903
+ {
3904
+ "epoch": 3.9,
3905
+ "grad_norm": 0.5046094240590331,
3906
+ "learning_rate": 1.9180830181797505e-09,
3907
+ "loss": 0.5222,
3908
+ "step": 5570
3909
+ },
3910
+ {
3911
+ "epoch": 3.91,
3912
+ "grad_norm": 0.5035868811303936,
3913
+ "learning_rate": 1.273498876942558e-09,
3914
+ "loss": 0.511,
3915
+ "step": 5580
3916
+ },
3917
+ {
3918
+ "epoch": 3.92,
3919
+ "grad_norm": 0.48822795586505313,
3920
+ "learning_rate": 7.604342321435032e-10,
3921
+ "loss": 0.5222,
3922
+ "step": 5590
3923
+ },
3924
+ {
3925
+ "epoch": 3.92,
3926
+ "grad_norm": 0.5199444169728372,
3927
+ "learning_rate": 3.789083702293028e-10,
3928
+ "loss": 0.5236,
3929
+ "step": 5600
3930
+ },
3931
+ {
3932
+ "epoch": 3.93,
3933
+ "grad_norm": 0.528390397947652,
3934
+ "learning_rate": 1.2893563301535904e-10,
3935
+ "loss": 0.5187,
3936
+ "step": 5610
3937
+ },
3938
+ {
3939
+ "epoch": 3.94,
3940
+ "grad_norm": 0.49922315857737276,
3941
+ "learning_rate": 1.0525417146023396e-11,
3942
+ "loss": 0.5179,
3943
+ "step": 5620
3944
+ }
3945
+ ],
3946
+ "logging_steps": 10,
3947
+ "max_steps": 5624,
3948
+ "num_input_tokens_seen": 0,
3949
+ "num_train_epochs": 4,
3950
+ "save_steps": 500,
3951
+ "total_flos": 2354981319475200.0,
3952
+ "train_batch_size": 8,
3953
+ "trial_name": null,
3954
+ "trial_params": null
3955
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d85d2ff5720e05dbb5441c3d20e7ba4b6a45de57469d8179edcc7769226b30da
3
+ size 7800
zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)