Aigis
commited on
Commit
·
3f94e82
1
Parent(s):
d907d60
Added Models.
Browse files- Inferencecode.py +35 -0
- README.md +87 -0
- UUFO.png +0 -0
- config.json +24 -0
- model.safetensors +3 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +42 -0
Inferencecode.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
|
5 |
+
MODEL_NAME = "UUFO-Aigis/Pico-OpenLAiNN-100M" #Replace 100M with 250M or 500M if you prefer those models.
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
9 |
+
|
10 |
+
def generate_text(prompt, model, tokenizer, max_length=512, temperature=1, top_k=50, top_p=0.95):
|
11 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
12 |
+
|
13 |
+
outputs = model.generate(
|
14 |
+
inputs,
|
15 |
+
max_length=max_length,
|
16 |
+
temperature=temperature,
|
17 |
+
top_k=top_k,
|
18 |
+
top_p=top_p,
|
19 |
+
do_sample=True
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
+
return generated_text
|
25 |
+
|
26 |
+
def main():
|
27 |
+
# Define your prompt
|
28 |
+
prompt = "According to all known laws of aviation, there is no way a bee should be able to fly."
|
29 |
+
|
30 |
+
generated_text = generate_text(prompt, model, tokenizer)
|
31 |
+
|
32 |
+
print(generated_text)
|
33 |
+
|
34 |
+
if __name__ == "__main__":
|
35 |
+
main()
|
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Pico-OpenLAiNN-100M 🤗
|
2 |
+
|
3 |
+
Hey there fellow researchers, developers, and AI enthusiasts! Today I'm releasing the full version of Pico-OpenLAiNN-100M, I had previously released a version before this that was trained on only 8B tokens. This LLM was trained on the full 32B tokens that the entire Open-PicoLAiNN family is trained on.
|
4 |
+
|
5 |
+
You can find the GGUF quants of this model [here](https://huggingface.co/UUFO-Aigis/Pico-OpenLAiNN-100M-gguf).
|
6 |
+
## Models Overview
|
7 |
+
|
8 |
+
- **Pico-OpenLAiNN-100**: The smallest of the bunch, this 100M parameter model is perfect for quick experiments and applications where computational resources are *extremely* limited.
|
9 |
+
- **Pico-OpenLAiNN-250**: This is the middle child of the PicoLAiNN family, it's still tiny at 250M parameters but is more capable than the 100M parameter model.
|
10 |
+
- **Pico-OpenLAiNN-500**: My current "Heavyweight" Model, this model has 500M parameters and is the most capable of the Pico-OpenLAiNN models.
|
11 |
+
## Pretraining Details
|
12 |
+
|
13 |
+
This specific version of Pico LAiNN was trained on just 32B tokens of the fineweb dataset.
|
14 |
+
|
15 |
+
## Other information:
|
16 |
+
|
17 |
+
- **Compatibility**: Built to be compatible with existing projects that use LLAMA 2's tokenizer and architecture.
|
18 |
+
- **Ease of Use**: No need to reinvent the wheel. These models are ready to be plugged into your applications.
|
19 |
+
- **Open Source**: Fully open source, so you can tweak, tune, and twist them to your heart's content.
|
20 |
+
## Getting Started
|
21 |
+
|
22 |
+
To start using these models, you can simply load them via the Hugging Face `transformers` library:
|
23 |
+
|
24 |
+
```python
|
25 |
+
import torch
|
26 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
27 |
+
|
28 |
+
|
29 |
+
MODEL_NAME = "UUFO-Aigis/Pico-OpenLAiNN-100M" #Replace 100M with 250M or 500M if you prefer those models.
|
30 |
+
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
33 |
+
|
34 |
+
def generate_text(prompt, model, tokenizer, max_length=512, temperature=1, top_k=50, top_p=0.95):
|
35 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
36 |
+
|
37 |
+
outputs = model.generate(
|
38 |
+
inputs,
|
39 |
+
max_length=max_length,
|
40 |
+
temperature=temperature,
|
41 |
+
top_k=top_k,
|
42 |
+
top_p=top_p,
|
43 |
+
do_sample=True
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
+
return generated_text
|
49 |
+
|
50 |
+
def main():
|
51 |
+
# Define your prompt
|
52 |
+
prompt = "According to all known laws of aviation, there is no way a bee should be able to fly."
|
53 |
+
|
54 |
+
generated_text = generate_text(prompt, model, tokenizer)
|
55 |
+
|
56 |
+
print(generated_text)
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
main()
|
60 |
+
```
|
61 |
+
# Benchy :3
|
62 |
+
|
63 |
+
| Tasks | Value | |Stderr|
|
64 |
+
|--------------|------:|---|-----:|
|
65 |
+
|arc_challenge | 0.1826|± |0.0113|
|
66 |
+
|arc_easy | 0.4007|± |0.0101|
|
67 |
+
|boolq | 0.6012|± |0.0086|
|
68 |
+
|hellaswag | 0.2936|± |0.0045|
|
69 |
+
|lambada_openai| 0.2701|± |0.0062|
|
70 |
+
|piqa | 0.6338|± |0.0112|
|
71 |
+
|winogrande | 0.5099|± |0.0140|
|
72 |
+
|
73 |
+
## Future Plans
|
74 |
+
|
75 |
+
- **More Models**: I'm currenetly training the bigger siblings of this models, including a 1B parameter version and beyond. 2-4 Billion parameter versions are planned. These will be Released as OpenLAiNN.
|
76 |
+
- **New architecture**: This is still up in the air and I'm still developing it, and will release if I deem it to be actually useful, so stay tuned, this will likely be named FLaRE-LAiNN.
|
77 |
+
- **Paper**: A detailed paper made available for those interested in the details.
|
78 |
+
|
79 |
+
## Credit Where Credit's Due
|
80 |
+
|
81 |
+
If you find these models useful and decide to use these models, a link to this repository would be highly appreciated. I am a one man show running this. Thanks 🤗
|
82 |
+
## Contact
|
83 |
+
If you have questions, Please reach out to me at urlsys32dll@gmail.com
|
84 |
+
|
85 |
+
<p align="center">
|
86 |
+
<img src="UUFO.png" alt="U.U.F.O Research Logo" width="250"/>
|
87 |
+
</p>
|
UUFO.png
ADDED
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"bos_token_id": 1,
|
6 |
+
"eos_token_id": 2,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 2048,
|
11 |
+
"max_position_embeddings": 2048,
|
12 |
+
"model_type": "llama",
|
13 |
+
"num_attention_heads": 8,
|
14 |
+
"num_hidden_layers": 9,
|
15 |
+
"num_key_value_heads": 1,
|
16 |
+
"pretraining_tp": 1,
|
17 |
+
"rms_norm_eps": 1e-05,
|
18 |
+
"rope_scaling": null,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.31.0.dev0",
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 32000
|
24 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4c70d33d48d95eb670045f7ceb066f6f373c5bbfea91072e7aedd13a93f5b3e
|
3 |
+
size 207164992
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": true,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 2048,
|
36 |
+
"pad_token": null,
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false
|
42 |
+
}
|