JSX_TTS / torch /testing /_legacy.py
UMMJ's picture
Upload 5875 files
9dd3461
"""This module exist to be able to deprecate functions publicly without doing so internally. The deprecated
public versions are defined in torch.testing._deprecated and exposed from torch.testing. The non-deprecated internal
versions should be imported from torch.testing._internal
"""
from typing import List
import torch
__all_dtype_getters__ = [
"_validate_dtypes",
"_dispatch_dtypes",
"all_types",
"all_types_and",
"all_types_and_complex",
"all_types_and_complex_and",
"all_types_and_half",
"complex_types",
"empty_types",
"floating_and_complex_types",
"floating_and_complex_types_and",
"floating_types",
"floating_types_and",
"double_types",
"floating_types_and_half",
"get_all_complex_dtypes",
"get_all_dtypes",
"get_all_fp_dtypes",
"get_all_int_dtypes",
"get_all_math_dtypes",
"integral_types",
"integral_types_and",
]
__all__ = [
*__all_dtype_getters__,
"get_all_device_types",
]
# Functions and classes for describing the dtypes a function supports
# NOTE: these helpers should correspond to PyTorch's C++ dispatch macros
# Verifies each given dtype is a torch.dtype
def _validate_dtypes(*dtypes):
for dtype in dtypes:
assert isinstance(dtype, torch.dtype)
return dtypes
# class for tuples corresponding to a PyTorch dispatch macro
class _dispatch_dtypes(tuple):
def __add__(self, other):
assert isinstance(other, tuple)
return _dispatch_dtypes(tuple.__add__(self, other))
_empty_types = _dispatch_dtypes(())
def empty_types():
return _empty_types
_floating_types = _dispatch_dtypes((torch.float32, torch.float64))
def floating_types():
return _floating_types
_floating_types_and_half = _floating_types + (torch.half,)
def floating_types_and_half():
return _floating_types_and_half
def floating_types_and(*dtypes):
return _floating_types + _validate_dtypes(*dtypes)
_floating_and_complex_types = _floating_types + (torch.cfloat, torch.cdouble)
def floating_and_complex_types():
return _floating_and_complex_types
def floating_and_complex_types_and(*dtypes):
return _floating_and_complex_types + _validate_dtypes(*dtypes)
_double_types = _dispatch_dtypes((torch.float64, torch.complex128))
def double_types():
return _double_types
_integral_types = _dispatch_dtypes((torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64))
def integral_types():
return _integral_types
def integral_types_and(*dtypes):
return _integral_types + _validate_dtypes(*dtypes)
_all_types = _floating_types + _integral_types
def all_types():
return _all_types
def all_types_and(*dtypes):
return _all_types + _validate_dtypes(*dtypes)
_complex_types = _dispatch_dtypes((torch.cfloat, torch.cdouble))
def complex_types():
return _complex_types
def complex_types_and(*dtypes):
return _complex_types + _validate_dtypes(*dtypes)
_all_types_and_complex = _all_types + _complex_types
def all_types_and_complex():
return _all_types_and_complex
def all_types_and_complex_and(*dtypes):
return _all_types_and_complex + _validate_dtypes(*dtypes)
_all_types_and_half = _all_types + (torch.half,)
def all_types_and_half():
return _all_types_and_half
# The functions below are used for convenience in our test suite and thus have no corresponding C++ dispatch macro
# See AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS.
def get_all_dtypes(include_half=True,
include_bfloat16=True,
include_bool=True,
include_complex=True,
include_complex32=False,
include_qint=False,
) -> List[torch.dtype]:
dtypes = get_all_int_dtypes() + get_all_fp_dtypes(include_half=include_half, include_bfloat16=include_bfloat16)
if include_bool:
dtypes.append(torch.bool)
if include_complex:
dtypes += get_all_complex_dtypes(include_complex32)
if include_qint:
dtypes += get_all_qint_dtypes()
return dtypes
def get_all_math_dtypes(device) -> List[torch.dtype]:
return get_all_int_dtypes() + get_all_fp_dtypes(include_half=device.startswith('cuda'),
include_bfloat16=False) + get_all_complex_dtypes()
def get_all_complex_dtypes(include_complex32=False) -> List[torch.dtype]:
return [torch.complex32, torch.complex64, torch.complex128] if include_complex32 else [torch.complex64, torch.complex128]
def get_all_int_dtypes() -> List[torch.dtype]:
return [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]
def get_all_fp_dtypes(include_half=True, include_bfloat16=True) -> List[torch.dtype]:
dtypes = [torch.float32, torch.float64]
if include_half:
dtypes.append(torch.float16)
if include_bfloat16:
dtypes.append(torch.bfloat16)
return dtypes
def get_all_qint_dtypes() -> List[torch.dtype]:
return [torch.qint8, torch.quint8, torch.qint32, torch.quint4x2, torch.quint2x4]
def get_all_device_types() -> List[str]:
return ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda']