|
import math |
|
import torch |
|
from torch import Tensor |
|
from .optimizer import Optimizer |
|
from typing import List, Optional |
|
|
|
__all__ = ['NAdam', 'nadam'] |
|
|
|
class NAdam(Optimizer): |
|
r"""Implements NAdam algorithm. |
|
|
|
.. math:: |
|
\begin{aligned} |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{input} : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)}, |
|
\: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\ |
|
&\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)} \\ |
|
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, |
|
v_0 \leftarrow 0 \text{ ( second moment)} \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
|
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm}if \: \lambda \neq 0 \\ |
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
|
&\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{t \psi} \big) \\ |
|
&\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\\ |
|
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ |
|
&\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ |
|
&\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\\[-1.ex] |
|
& \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i}) \\ |
|
&\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ |
|
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/ |
|
\big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
&\bf{return} \: \theta_t \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
\end{aligned} |
|
|
|
For further details regarding the algorithm we refer to `Incorporating Nesterov Momentum into Adam`_. |
|
|
|
Args: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 2e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
momentum_decay (float, optional): momentum momentum_decay (default: 4e-3) |
|
foreach (bool, optional): whether foreach implementation of optimizer |
|
is used (default: None) |
|
|
|
.. _Incorporating Nesterov Momentum into Adam: |
|
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ |
|
""" |
|
|
|
def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8, |
|
weight_decay=0, momentum_decay=4e-3, foreach: Optional[bool] = None): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
if not 0.0 <= weight_decay: |
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
|
if not 0.0 <= momentum_decay: |
|
raise ValueError("Invalid momentum_decay value: {}".format(momentum_decay)) |
|
defaults = dict(lr=lr, betas=betas, eps=eps, |
|
weight_decay=weight_decay, momentum_decay=momentum_decay, |
|
foreach=foreach) |
|
super(NAdam, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('foreach', None) |
|
state_values = list(self.state.values()) |
|
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step']) |
|
if not step_is_tensor: |
|
for s in state_values: |
|
s['step'] = torch.tensor(float(s['step'])) |
|
mu_product_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['mu_product']) |
|
if not mu_product_is_tensor: |
|
for s in state_values: |
|
s['mu_product'] = torch.tensor(s['mu_product']) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad = [] |
|
grads = [] |
|
exp_avgs = [] |
|
exp_avg_sqs = [] |
|
mu_products = [] |
|
state_steps = [] |
|
beta1, beta2 = group['betas'] |
|
|
|
for p in group['params']: |
|
if p.grad is not None: |
|
params_with_grad.append(p) |
|
if p.grad.is_sparse: |
|
raise RuntimeError('NAdam does not support sparse gradients') |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
state['step'] = torch.tensor(0.) |
|
state['mu_product'] = torch.tensor(1.) |
|
|
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
exp_avgs.append(state['exp_avg']) |
|
exp_avg_sqs.append(state['exp_avg_sq']) |
|
mu_products.append(state['mu_product']) |
|
state_steps.append(state['step']) |
|
|
|
nadam(params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
mu_products, |
|
state_steps, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=group['lr'], |
|
weight_decay=group['weight_decay'], |
|
momentum_decay=group['momentum_decay'], |
|
eps=group['eps'], |
|
foreach=group['foreach']) |
|
|
|
return loss |
|
|
|
|
|
def nadam(params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
mu_products: List[Tensor], |
|
state_steps: List[Tensor], |
|
|
|
|
|
foreach: bool = None, |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
momentum_decay: float, |
|
eps: float): |
|
r"""Functional API that performs NAdam algorithm computation. |
|
|
|
See :class:`~torch.optim.NAdam` for details. |
|
""" |
|
|
|
if not all(isinstance(t, torch.Tensor) for t in state_steps): |
|
raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors") |
|
|
|
if not all(isinstance(t, torch.Tensor) for t in mu_products): |
|
raise RuntimeError("API has changed, `mu_products` argument must contain a list of singleton tensors") |
|
|
|
if foreach is None: |
|
|
|
foreach = False |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError('torch.jit.script not supported with foreach optimizers') |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_nadam |
|
else: |
|
func = _single_tensor_nadam |
|
|
|
func(params, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
mu_products, |
|
state_steps, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
momentum_decay=momentum_decay, |
|
eps=eps) |
|
|
|
|
|
def _single_tensor_nadam(params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
mu_products: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
momentum_decay: float, |
|
eps: float): |
|
|
|
for i, param in enumerate(params): |
|
grad = grads[i] |
|
exp_avg = exp_avgs[i] |
|
exp_avg_sq = exp_avg_sqs[i] |
|
mu_product = mu_products[i] |
|
step_t = state_steps[i] |
|
|
|
step_t += 1 |
|
step = step_t.item() |
|
|
|
bias_correction2 = 1 - beta2 ** step |
|
|
|
if weight_decay != 0: |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
|
|
mu = beta1 * (1. - 0.5 * (0.96 ** (step * momentum_decay))) |
|
mu_next = beta1 * (1. - 0.5 * (0.96 ** ((step + 1) * momentum_decay))) |
|
|
|
|
|
mu_product *= mu |
|
mu_product_next = mu_product * mu * mu_next |
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
|
|
denom = exp_avg_sq.div(bias_correction2).sqrt().add_(eps) |
|
param.addcdiv_(grad, denom, value=-lr * (1. - mu) / (1. - mu_product.item())) |
|
param.addcdiv_(exp_avg, denom, value=-lr * mu_next / (1. - mu_product_next.item())) |
|
|
|
|
|
def _multi_tensor_nadam(params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
mu_products: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
momentum_decay: float, |
|
eps: float): |
|
|
|
if len(params) == 0: |
|
return |
|
|
|
|
|
torch._foreach_add_(state_steps, 1) |
|
|
|
bias_correction1 = [1 - beta1 ** step.item() for step in state_steps] |
|
bias_correction2 = [1 - beta2 ** step.item() for step in state_steps] |
|
mus = [beta1 * (1. - 0.5 * (0.96 ** (step.item() * momentum_decay))) for step in state_steps] |
|
mu_nexts = [beta1 * (1. - 0.5 * (0.96 ** ((step.item() + 1) * momentum_decay))) |
|
for step in state_steps] |
|
|
|
|
|
torch._foreach_mul_(mu_products, mus) |
|
|
|
if weight_decay != 0: |
|
torch._foreach_add_(grads, params, alpha=weight_decay) |
|
|
|
|
|
torch._foreach_mul_(exp_avgs, beta1) |
|
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) |
|
|
|
torch._foreach_mul_(exp_avg_sqs, beta2) |
|
torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2) |
|
|
|
exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs) |
|
bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2] |
|
torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt) |
|
denom = torch._foreach_add(exp_avg_sq_sqrt, eps) |
|
|
|
step_size_grads = [(lr * (1. - mu) / (1. - mu_product.item())) * -1 |
|
for mu_product, mu in zip(mu_products, mus)] |
|
step_size_expavg = [(lr * mu_next / (1. - mu_product.item() * mu_next)) * -1 |
|
for mu_product, mu_next in zip(mu_products, mu_nexts)] |
|
torch._foreach_addcdiv_(params, grads, denom, step_size_grads) |
|
torch._foreach_addcdiv_(params, exp_avgs, denom, step_size_expavg) |
|
|