|
import math |
|
import torch |
|
from torch import Tensor |
|
|
|
from .optimizer import Optimizer |
|
from typing import List, Optional |
|
|
|
__all__ = ['ASGD', 'asgd'] |
|
|
|
class ASGD(Optimizer): |
|
"""Implements Averaged Stochastic Gradient Descent. |
|
|
|
It has been proposed in `Acceleration of stochastic approximation by |
|
averaging`_. |
|
|
|
Args: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-2) |
|
lambd (float, optional): decay term (default: 1e-4) |
|
alpha (float, optional): power for eta update (default: 0.75) |
|
t0 (float, optional): point at which to start averaging (default: 1e6) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
foreach (bool, optional): whether foreach implementation of optimizer |
|
is used (default: None) |
|
maximize (bool, optional): maximize the params based on the objective, instead of |
|
minimizing (default: False) |
|
|
|
.. _Acceleration of stochastic approximation by averaging: |
|
https://dl.acm.org/citation.cfm?id=131098 |
|
""" |
|
|
|
def __init__(self, params, lr=1e-2, lambd=1e-4, alpha=0.75, t0=1e6, weight_decay=0, |
|
foreach: Optional[bool] = None, maximize: bool = False): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= weight_decay: |
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
|
|
|
defaults = dict(lr=lr, lambd=lambd, alpha=alpha, t0=t0, |
|
weight_decay=weight_decay, foreach=foreach, maximize=maximize) |
|
super(ASGD, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('foreach', None) |
|
group.setdefault('maximize', False) |
|
state_values = list(self.state.values()) |
|
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step']) |
|
if not step_is_tensor: |
|
for s in state_values: |
|
s['step'] = torch.tensor(float(s['step'])) |
|
eta_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['eta']) |
|
if not eta_is_tensor: |
|
for s in state_values: |
|
s['eta'] = torch.tensor(s['eta']) |
|
mu_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['mu']) |
|
if not mu_is_tensor: |
|
for s in state_values: |
|
s['mu'] = torch.tensor(float(s['mu'])) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad = [] |
|
grads = [] |
|
mus = [] |
|
axs = [] |
|
etas = [] |
|
state_steps = [] |
|
|
|
for p in group['params']: |
|
if p.grad is not None: |
|
params_with_grad.append(p) |
|
if p.grad.is_sparse: |
|
raise RuntimeError('ASGD does not support sparse gradients') |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
state['step'] = torch.tensor(0.) |
|
state['eta'] = torch.tensor(group['lr']) |
|
state['mu'] = torch.tensor(1.) |
|
state['ax'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
mus.append(state['mu']) |
|
axs.append(state['ax']) |
|
etas.append(state['eta']) |
|
state_steps.append(state['step']) |
|
|
|
asgd(params_with_grad, |
|
grads, |
|
axs, |
|
mus, |
|
etas, |
|
state_steps, |
|
lambd=group['lambd'], |
|
lr=group['lr'], |
|
t0=group['t0'], |
|
alpha=group['alpha'], |
|
weight_decay=group['weight_decay'], |
|
foreach=group['foreach'], |
|
maximize=group['maximize']) |
|
|
|
return loss |
|
|
|
|
|
def asgd(params: List[Tensor], |
|
grads: List[Tensor], |
|
axs: List[Tensor], |
|
mus: List[Tensor], |
|
etas: List[Tensor], |
|
state_steps: List[Tensor], |
|
|
|
|
|
foreach: bool = None, |
|
maximize: bool = False, |
|
*, |
|
lambd: float, |
|
lr: float, |
|
t0: float, |
|
alpha: float, |
|
weight_decay: float): |
|
r"""Functional API that performs asgd algorithm computation. |
|
|
|
See :class:`~torch.optim.ASGD` for details. |
|
""" |
|
|
|
if foreach is None: |
|
|
|
foreach = False |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError('torch.jit.script not supported with foreach optimizers') |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_asgd |
|
else: |
|
func = _single_tensor_asgd |
|
|
|
func(params, |
|
grads, |
|
axs, |
|
mus, |
|
etas, |
|
state_steps, |
|
lambd=lambd, |
|
lr=lr, |
|
t0=t0, |
|
alpha=alpha, |
|
weight_decay=weight_decay, |
|
maximize=maximize) |
|
|
|
|
|
def _single_tensor_asgd(params: List[Tensor], |
|
grads: List[Tensor], |
|
axs: List[Tensor], |
|
mus: List[Tensor], |
|
etas: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
lambd: float, |
|
lr: float, |
|
t0: float, |
|
alpha: float, |
|
weight_decay: float, |
|
maximize: bool): |
|
|
|
for i, param in enumerate(params): |
|
grad = grads[i] |
|
grad = grad if not maximize else -grad |
|
mu = mus[i] |
|
ax = axs[i] |
|
eta = etas[i] |
|
step_t = state_steps[i] |
|
|
|
if torch.is_complex(param): |
|
grad = torch.view_as_real(grad) |
|
param = torch.view_as_real(param) |
|
ax = torch.view_as_real(ax) |
|
|
|
|
|
step_t += 1 |
|
step = step_t.item() |
|
|
|
if weight_decay != 0: |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
|
|
param.mul_(1 - lambd * eta.item()) |
|
|
|
|
|
param.add_(grad, alpha=-eta.item()) |
|
|
|
|
|
if mu.item() != 1: |
|
ax.add_(param.sub(ax).mul(mu)) |
|
else: |
|
ax.copy_(param) |
|
|
|
new_eta = torch.tensor(lr / math.pow((1 + lambd * lr * step), alpha)) |
|
eta.copy_(new_eta) |
|
new_mu = torch.tensor(1 / max(1, step - t0)) |
|
mu.copy_(new_mu) |
|
|
|
|
|
def _multi_tensor_asgd(params: List[Tensor], |
|
grads: List[Tensor], |
|
axs: List[Tensor], |
|
mus: List[Tensor], |
|
etas: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
lambd: float, |
|
lr: float, |
|
t0: float, |
|
alpha: float, |
|
weight_decay: float, |
|
maximize: bool): |
|
|
|
if len(params) == 0: |
|
return |
|
|
|
if maximize: |
|
grads = torch._foreach_neg(grads) |
|
|
|
def _view_complex_as_real(tensor_list): |
|
return [torch.view_as_real(t) if torch.is_complex(t) else t for t in tensor_list] |
|
|
|
grads = _view_complex_as_real(grads) |
|
params = _view_complex_as_real(params) |
|
axs = _view_complex_as_real(axs) |
|
|
|
|
|
torch._foreach_add_(state_steps, 1) |
|
|
|
if weight_decay != 0: |
|
grads = torch._foreach_add(grads, params, alpha=weight_decay) |
|
|
|
|
|
eta = etas[0].item() |
|
torch._foreach_mul_(params, 1 - lambd * eta) |
|
|
|
|
|
torch._foreach_add_(params, grads, alpha=-eta) |
|
|
|
|
|
for i in range(len(axs)): |
|
if mus[i].item() != 1: |
|
axs[i].add_(params[i].sub(axs[i]).mul(mus[i])) |
|
else: |
|
axs[i].copy_(params[i]) |
|
|
|
|
|
for i in range(len(mus)): |
|
new_eta = torch.tensor(lr / math.pow((1 + lambd * lr * state_steps[i].item()), alpha)) |
|
etas[i].copy_(new_eta) |
|
new_mu = torch.tensor(1 / max(1, state_steps[i].item() - t0)) |
|
mus[i].copy_(new_mu) |
|
|