|
import torch |
|
from torch import Tensor |
|
|
|
from .optimizer import Optimizer |
|
from typing import List, Optional |
|
|
|
__all__ = ['Adamax', 'adamax'] |
|
|
|
class Adamax(Optimizer): |
|
r"""Implements Adamax algorithm (a variant of Adam based on infinity norm). |
|
|
|
.. math:: |
|
\begin{aligned} |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2 |
|
\text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)}, |
|
\: \lambda \text{ (weight decay)}, \\ |
|
&\hspace{13mm} \epsilon \text{ (epsilon)} \\ |
|
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, |
|
u_0 \leftarrow 0 \text{ ( infinity norm)} \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
|
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm}if \: \lambda \neq 0 \\ |
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
|
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ |
|
&\hspace{5mm}u_t \leftarrow \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon) \\ |
|
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\ |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
&\bf{return} \: \theta_t \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
\end{aligned} |
|
|
|
For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_. |
|
|
|
Args: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 2e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
foreach (bool, optional): whether foreach implementation of optimizer is used (default: None) |
|
maximize (bool, optional): maximize the params based on the objective, instead of |
|
minimizing (default: False) |
|
|
|
.. _Adam\: A Method for Stochastic Optimization: |
|
https://arxiv.org/abs/1412.6980 |
|
""" |
|
|
|
def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8, |
|
weight_decay=0, foreach: Optional[bool] = None, *, maximize: bool = False): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
if not 0.0 <= weight_decay: |
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
|
|
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, |
|
foreach=foreach, maximize=maximize) |
|
super(Adamax, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('foreach', None) |
|
group.setdefault('maximize', False) |
|
state_values = list(self.state.values()) |
|
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step']) |
|
if not step_is_tensor: |
|
for s in state_values: |
|
s['step'] = torch.tensor(float(s['step'])) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad = [] |
|
grads = [] |
|
exp_avgs = [] |
|
exp_infs = [] |
|
state_steps = [] |
|
|
|
beta1, beta2 = group['betas'] |
|
eps = group['eps'] |
|
lr = group['lr'] |
|
weight_decay = group['weight_decay'] |
|
foreach = group['foreach'] |
|
maximize = group['maximize'] |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
params_with_grad.append(p) |
|
if p.grad.is_sparse: |
|
raise RuntimeError('Adamax does not support sparse gradients') |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = torch.tensor(0.) |
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
state['exp_inf'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
exp_avgs.append(state['exp_avg']) |
|
exp_infs.append(state['exp_inf']) |
|
state_steps.append(state['step']) |
|
|
|
adamax(params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_infs, |
|
state_steps, |
|
eps=eps, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
foreach=foreach, |
|
maximize=maximize) |
|
|
|
return loss |
|
|
|
|
|
def adamax(params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_infs: List[Tensor], |
|
state_steps: List[Tensor], |
|
|
|
|
|
foreach: bool = None, |
|
maximize: bool = False, |
|
*, |
|
eps: float, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float): |
|
r"""Functional API that performs adamax algorithm computation. |
|
|
|
See :class:`~torch.optim.Adamax` for details. |
|
""" |
|
|
|
if not all(isinstance(t, torch.Tensor) for t in state_steps): |
|
raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors") |
|
|
|
if foreach is None: |
|
|
|
foreach = False |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError('torch.jit.script not supported with foreach optimizers') |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_adamax |
|
else: |
|
func = _single_tensor_adamax |
|
|
|
func(params, |
|
grads, |
|
exp_avgs, |
|
exp_infs, |
|
state_steps, |
|
eps=eps, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
maximize=maximize) |
|
|
|
|
|
def _single_tensor_adamax(params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_infs: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
eps: float, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
maximize: bool): |
|
|
|
for i, param in enumerate(params): |
|
grad = grads[i] |
|
grad = grad if not maximize else -grad |
|
exp_avg = exp_avgs[i] |
|
exp_inf = exp_infs[i] |
|
step_t = state_steps[i] |
|
|
|
step_t += 1 |
|
step = step_t.item() |
|
|
|
if weight_decay != 0: |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
if torch.is_complex(param): |
|
param = torch.view_as_real(param) |
|
grad = torch.view_as_real(grad) |
|
exp_avg = torch.view_as_real(exp_avg) |
|
exp_inf = torch.view_as_real(exp_inf) |
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
|
|
norm_buf = torch.cat([ |
|
exp_inf.mul_(beta2).unsqueeze(0), |
|
grad.abs().add_(eps).unsqueeze_(0) |
|
], 0) |
|
torch.amax(norm_buf, 0, keepdim=False, out=exp_inf) |
|
|
|
bias_correction = 1 - beta1 ** step |
|
clr = lr / bias_correction |
|
|
|
param.addcdiv_(exp_avg, exp_inf, value=-clr) |
|
|
|
|
|
def _multi_tensor_adamax(params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_infs: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
eps: float, |
|
maximize: bool): |
|
|
|
if len(params) == 0: |
|
return |
|
|
|
if maximize: |
|
grads = torch._foreach_neg(grads) |
|
|
|
params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params] |
|
grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads] |
|
exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs] |
|
exp_infs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_infs] |
|
|
|
|
|
torch._foreach_add_(state_steps, 1) |
|
|
|
if weight_decay != 0: |
|
torch._foreach_add_(grads, params, alpha=weight_decay) |
|
|
|
|
|
torch._foreach_mul_(exp_avgs, beta1) |
|
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) |
|
|
|
|
|
torch._foreach_mul_(exp_infs, beta2) |
|
|
|
for exp_inf, grad in zip(exp_infs, grads): |
|
norm_buf = torch.cat([ |
|
exp_inf.unsqueeze(0), |
|
grad.abs().add_(eps).unsqueeze_(0) |
|
], 0) |
|
torch.max(norm_buf, 0, keepdim=False, out=(exp_inf, exp_inf.new().long())) |
|
|
|
bias_corrections = [1 - beta1 ** step.item() for step in state_steps] |
|
clr = [-1 * (lr / bias_correction) for bias_correction in bias_corrections] |
|
torch._foreach_addcdiv_(params, exp_avgs, exp_infs, clr) |
|
|