|
import torch |
|
from torch import Tensor |
|
|
|
from .optimizer import Optimizer |
|
from typing import List, Optional |
|
|
|
__all__ = ['Adagrad', 'adagrad'] |
|
|
|
class Adagrad(Optimizer): |
|
r"""Implements Adagrad algorithm. |
|
|
|
.. math:: |
|
\begin{aligned} |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta) |
|
\text{ (objective)}, \: \lambda \text{ (weight decay)}, \\ |
|
&\hspace{12mm} \tau \text{ (initial accumulator value)}, \: \eta\text{ (lr decay)}\\ |
|
&\textbf{initialize} : state\_sum_0 \leftarrow 0 \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
|
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm} \tilde{\gamma} \leftarrow \gamma / (1 +(t-1) \eta) \\ |
|
&\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\ |
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
|
&\hspace{5mm}state\_sum_t \leftarrow state\_sum_{t-1} + g^2_t \\ |
|
&\hspace{5mm}\theta_t \leftarrow |
|
\theta_{t-1}- \tilde{\gamma} \frac{g_t}{\sqrt{state\_sum_t}+\epsilon} \\ |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
&\bf{return} \: \theta_t \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
\end{aligned} |
|
|
|
For further details regarding the algorithm we refer to `Adaptive Subgradient Methods for Online Learning |
|
and Stochastic Optimization`_. |
|
|
|
Args: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-2) |
|
lr_decay (float, optional): learning rate decay (default: 0) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-10) |
|
foreach (bool, optional): whether foreach implementation of optimizer is used (default: None) |
|
maximize (bool, optional): maximize the params based on the objective, instead of |
|
minimizing (default: False) |
|
|
|
.. _Adaptive Subgradient Methods for Online Learning and Stochastic |
|
Optimization: http://jmlr.org/papers/v12/duchi11a.html |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=1e-2, |
|
lr_decay=0, |
|
weight_decay=0, |
|
initial_accumulator_value=0, |
|
eps=1e-10, |
|
foreach: Optional[bool] = None, |
|
*, |
|
maximize: bool = False |
|
): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= lr_decay: |
|
raise ValueError("Invalid lr_decay value: {}".format(lr_decay)) |
|
if not 0.0 <= weight_decay: |
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
|
if not 0.0 <= initial_accumulator_value: |
|
raise ValueError( |
|
"Invalid initial_accumulator_value value: {}".format( |
|
initial_accumulator_value |
|
) |
|
) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
|
|
defaults = dict( |
|
lr=lr, |
|
lr_decay=lr_decay, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
initial_accumulator_value=initial_accumulator_value, |
|
foreach=foreach, |
|
maximize=maximize, |
|
) |
|
super(Adagrad, self).__init__(params, defaults) |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
state = self.state[p] |
|
state["step"] = torch.tensor(0.0) |
|
init_value = ( |
|
complex(initial_accumulator_value, initial_accumulator_value) |
|
if torch.is_complex(p) |
|
else initial_accumulator_value |
|
) |
|
state["sum"] = torch.full_like( |
|
p, init_value, memory_format=torch.preserve_format |
|
) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("foreach", None) |
|
group.setdefault("maximize", False) |
|
|
|
state_values = list(self.state.values()) |
|
step_is_tensor = (len(state_values) != 0) and torch.is_tensor( |
|
state_values[0]["step"] |
|
) |
|
if not step_is_tensor: |
|
for s in state_values: |
|
s["step"] = torch.tensor(float(s["step"])) |
|
|
|
def share_memory(self): |
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
state = self.state[p] |
|
state["sum"].share_memory_() |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
|
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad = [] |
|
grads = [] |
|
state_sums = [] |
|
state_steps = [] |
|
|
|
has_sparse_grad = False |
|
for p in group["params"]: |
|
if p.grad is not None: |
|
if p.grad.is_sparse: |
|
has_sparse_grad = True |
|
params_with_grad.append(p) |
|
grads.append(p.grad) |
|
state = self.state[p] |
|
state_sums.append(state["sum"]) |
|
state_steps.append(state["step"]) |
|
|
|
adagrad( |
|
params_with_grad, |
|
grads, |
|
state_sums, |
|
state_steps, |
|
lr=group["lr"], |
|
weight_decay=group["weight_decay"], |
|
lr_decay=group["lr_decay"], |
|
eps=group["eps"], |
|
has_sparse_grad=has_sparse_grad, |
|
foreach=group["foreach"], |
|
maximize=group["maximize"], |
|
) |
|
|
|
return loss |
|
|
|
|
|
def adagrad( |
|
params: List[Tensor], |
|
grads: List[Tensor], |
|
state_sums: List[Tensor], |
|
state_steps: List[Tensor], |
|
|
|
|
|
has_sparse_grad: bool = None, |
|
foreach: bool = None, |
|
*, |
|
lr: float, |
|
weight_decay: float, |
|
lr_decay: float, |
|
eps: float, |
|
maximize: bool, |
|
): |
|
r"""Functional API that performs Adagrad algorithm computation. |
|
|
|
See :class:`~torch.optim.Adagrad` for details. |
|
""" |
|
|
|
if not all(isinstance(t, torch.Tensor) for t in state_steps): |
|
raise RuntimeError( |
|
"API has changed, `state_steps` argument must contain a list of singleton tensors" |
|
) |
|
|
|
if foreach is None: |
|
|
|
foreach = False |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_adagrad |
|
else: |
|
func = _single_tensor_adagrad |
|
|
|
func( |
|
params, |
|
grads, |
|
state_sums, |
|
state_steps, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
lr_decay=lr_decay, |
|
eps=eps, |
|
has_sparse_grad=has_sparse_grad, |
|
maximize=maximize, |
|
) |
|
|
|
|
|
def _make_sparse(grad, grad_indices, values): |
|
size = grad.size() |
|
if grad_indices.numel() == 0 or values.numel() == 0: |
|
return torch.empty_like(grad) |
|
return torch.sparse_coo_tensor(grad_indices, values, size) |
|
|
|
|
|
def _single_tensor_adagrad( |
|
params: List[Tensor], |
|
grads: List[Tensor], |
|
state_sums: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
lr: float, |
|
weight_decay: float, |
|
lr_decay: float, |
|
eps: float, |
|
has_sparse_grad: bool, |
|
maximize: bool, |
|
): |
|
|
|
for (param, grad, state_sum, step_t) in zip(params, grads, state_sums, state_steps): |
|
|
|
step_t += 1 |
|
step = step_t.item() |
|
grad = grad if not maximize else -grad |
|
|
|
if weight_decay != 0: |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
"weight_decay option is not compatible with sparse gradients" |
|
) |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
clr = lr / (1 + (step - 1) * lr_decay) |
|
|
|
if grad.is_sparse: |
|
grad = grad.coalesce() |
|
grad_indices = grad._indices() |
|
grad_values = grad._values() |
|
size = grad.size() |
|
|
|
state_sum.add_(_make_sparse(grad, grad_indices, grad_values.pow(2))) |
|
std = state_sum.sparse_mask(grad) |
|
std_values = std._values().sqrt_().add_(eps) |
|
param.add_( |
|
_make_sparse(grad, grad_indices, grad_values / std_values), alpha=-clr |
|
) |
|
else: |
|
is_complex = torch.is_complex(param) |
|
if is_complex: |
|
grad = torch.view_as_real(grad) |
|
state_sum = torch.view_as_real(state_sum) |
|
param = torch.view_as_real(param) |
|
state_sum.addcmul_(grad, grad, value=1) |
|
std = state_sum.sqrt().add_(eps) |
|
param.addcdiv_(grad, std, value=-clr) |
|
if is_complex: |
|
param = torch.view_as_complex(param) |
|
state_sum = torch.view_as_complex(state_sum) |
|
|
|
|
|
def _multi_tensor_adagrad( |
|
params: List[Tensor], |
|
grads: List[Tensor], |
|
state_sums: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
lr: float, |
|
weight_decay: float, |
|
lr_decay: float, |
|
eps: float, |
|
has_sparse_grad: bool, |
|
maximize: bool, |
|
): |
|
|
|
|
|
if len(params) == 0: |
|
return |
|
|
|
if maximize: |
|
grads = torch._foreach_neg(grads) |
|
|
|
if has_sparse_grad is None: |
|
has_sparse_grad = any(grad.is_sparse for grad in grads) |
|
|
|
if has_sparse_grad: |
|
return _single_tensor_adagrad( |
|
params, |
|
grads, |
|
state_sums, |
|
state_steps, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
lr_decay=lr_decay, |
|
eps=eps, |
|
has_sparse_grad=has_sparse_grad, |
|
maximize=False, |
|
) |
|
|
|
|
|
torch._foreach_add_(state_steps, 1) |
|
|
|
if weight_decay != 0: |
|
torch._foreach_add_(grads, params, alpha=weight_decay) |
|
|
|
minus_clr = [-lr / (1 + (step - 1) * lr_decay) for step in state_steps] |
|
|
|
grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads] |
|
state_sums = [ |
|
torch.view_as_real(x) if torch.is_complex(x) else x for x in state_sums |
|
] |
|
torch._foreach_addcmul_(state_sums, grads, grads, value=1) |
|
std = torch._foreach_add(torch._foreach_sqrt(state_sums), eps) |
|
toAdd = torch._foreach_div(torch._foreach_mul(grads, minus_clr), std) |
|
toAdd = [ |
|
torch.view_as_complex(x) if torch.is_complex(params[i]) else x |
|
for i, x in enumerate(toAdd) |
|
] |
|
torch._foreach_add_(params, toAdd) |
|
state_sums = [ |
|
torch.view_as_complex(x) if torch.is_complex(params[i]) else x |
|
for i, x in enumerate(state_sums) |
|
] |
|
|