JSX_TTS / torch /onnx /_patch_torch.py
UMMJ's picture
Upload 5875 files
9dd3461
"""Importing this patches torch._C classes to add ONNX conveniences."""
import numbers
import re
from typing import Any, Iterable, Tuple, Union
import torch
from torch import _C
from torch._C import _onnx as _C_onnx
# Import utils to get _params_dict because it is a global that is accessed by c++ code
from torch.onnx import _deprecation, utils
from torch.onnx._globals import GLOBALS
from torch.onnx._internal import _beartype
_ATTR_PATTERN = re.compile("^(.+)_(([ifstgz])|(ty))$")
# TODO(#78694): Remove this file after PyTorch 1.14.
# All functions in this file are deprecated and should not be used
@_deprecation.deprecated(
"1.13",
"1.14",
"note 'g.op()' is to be removed from torch.Graph. Please open a"
" GitHub issue if you need this functionality.",
)
@_beartype.beartype
def _graph_op(
g: _C.Graph,
opname: str,
*raw_args: Union[torch.Tensor, _C.Value],
outputs: int = 1,
**kwargs,
) -> Union[_C.Value, Tuple[_C.Value, ...]]:
r"""Creates an ONNX operator "opname", taking "args" as inputs and attributes "kwargs".
The set of operators and the inputs/attributes they take
is documented at https://github.com/onnx/onnx/blob/master/docs/Operators.md
This function is monkey-patched onto Graph.
Args:
g: The Torch graph.
opname: The ONNX operator name, e.g., `Abs` or `Add`, or an operator qualified
with a namespace, e.g., `aten::add`.
raw_args: The inputs to the operator; usually provided
as arguments to the `symbolic` definition.
outputs: The number of outputs this operator returns.
By default an operator is assumed to return a single output.
If `outputs` is greater than one, this functions returns a tuple
of output `Node`, representing each output of the ONNX operator
in positional.
kwargs: The attributes of the ONNX operator, whose keys are named
according to the following convention: `alpha_f` indicates
the `alpha` attribute with type `f`. The valid type specifiers are
`f` (float), `i` (int), `s` (string) or `t` (Tensor). An attribute
specified with type float accepts either a single float, or a
list of floats (e.g., you would say `dims_i` for a `dims` attribute
that takes a list of integers).
Returns:
The node representing the single output of this operator (see the `outputs`
keyword argument for multi-return nodes).
"""
# Filter out None attributes, this can be convenient client side because
# now they can pass through None attributes, and have them not show up
kwargs = {k: v for k, v in kwargs.items() if v is not None}
args = [_const_if_tensor(g, arg) for arg in raw_args]
if "::" in opname:
namespace, op = opname.split("::")
else:
namespace = "onnx"
op = opname
n = g.insertNode(_new_node(g, namespace, op, outputs, *args, **kwargs))
if GLOBALS.onnx_shape_inference:
_C._jit_pass_onnx_node_shape_type_inference(
n, utils._params_dict, GLOBALS.export_onnx_opset_version
)
if outputs == 1:
return n.output()
return tuple(n.outputs())
@_beartype.beartype
def _const_if_tensor(g: _C.Graph, arg):
if arg is None:
return arg
if isinstance(arg, _C.Value):
return arg
return _graph_op(g, "Constant", value_z=arg)
@_deprecation.deprecated(
"1.13",
"1.14",
"note 'g.at()' is to be removed from torch.Graph. Please open a"
" GitHub issue if you need this functionality.",
)
# Generate an ONNX ATen op node.
@_beartype.beartype
def _aten_op(g: _C.Graph, operator: str, *args, overload_name: str = "", **kwargs):
return _graph_op(
g,
"aten::ATen",
*args,
operator_s=operator,
overload_name_s=overload_name,
**kwargs,
)
@_deprecation.deprecated(
"1.13",
"1.14",
"note 'b.op()' is to be removed from torch.Block. Please open a"
" GitHub issue if you need this functionality.",
)
@_beartype.beartype
def _block_op(block: _C.Block, opname: str, *args: _C.Value, **kwargs):
if "::" in opname:
namespace, op = opname.split("::")
else:
namespace = "onnx"
op = opname
n = block.addNode(f"{namespace}::{op}", args)
aten = namespace == "aten"
skip_attrs = {"inplace", "aten"}
for k, v in sorted(kwargs.items()):
if k in skip_attrs:
continue
_add_attribute(n, k, v, aten=aten)
outputs = tuple(n.outputs())
if len(outputs) == 1:
return n.output()
return outputs
@_beartype.beartype
def _new_node(
g: _C.Graph, namespace: str, op: str, outputs: int, *args: _C.Value, **kwargs
) -> _C.Node:
"""Creates a new node in the graph.
Args:
g: The graph to create the operator on.
namespace: The namespace of the operator. E.g., "aten", "onnx".
op: The name of the operator to create.
outputs: The number of the outputs of the node.
Returns:
The new node.
"""
aten = namespace == "aten"
node = g.create(f"{namespace}::{op}", args, outputs)
skip_attrs = {"inplace", "aten"}
for k, v in sorted(kwargs.items()):
if k in skip_attrs:
continue
_add_attribute(node, k, v, aten=aten)
return node
@_beartype.beartype
def _is_onnx_list(value):
return (
not isinstance(value, torch._six.string_classes)
and not isinstance(value, torch.Tensor)
and isinstance(value, Iterable)
)
@_beartype.beartype
def _scalar(x: torch.Tensor):
"""Convert a scalar tensor into a Python value."""
assert x.numel() == 1
return x[0]
@_beartype.beartype
def _is_caffe2_aten_fallback() -> bool:
return (
GLOBALS.operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK
and _C_onnx._CAFFE2_ATEN_FALLBACK
)
@_beartype.beartype
def _add_attribute(node: _C.Node, key: str, value: Any, aten: bool):
r"""Initializes the right attribute based on type of value."""
m = _ATTR_PATTERN.match(key)
if m is None:
raise ValueError(
f"Invalid attribute specifier '{key}' names "
"must be suffixed with type, e.g. 'dim_i' or 'dims_i'"
)
name, kind = m.group(1), m.group(2)
if _is_onnx_list(value):
kind += "s"
if aten and _is_caffe2_aten_fallback():
if isinstance(value, torch.Tensor):
# Caffe2 proto does not support tensor attribute.
if value.numel() > 1:
raise ValueError("Should not pass tensor attribute")
value = _scalar(value)
if isinstance(value, float):
kind = "f"
else:
kind = "i"
return getattr(node, f"{kind}_")(name, value)
# TODO(#76254): Remove the deprecated function.
@_deprecation.deprecated(
"1.13", "1.14", "Use 'g.op()' to create a constant node instead."
)
@_beartype.beartype
def _graph_constant(
g,
value,
dims,
type_: str,
*args,
**kwargs,
):
"""This helper function can create either constant tensor or constant scalar.
If dims is None or 0 or [0], generate a 0-d tensor (scalar).
"""
assert isinstance(value, numbers.Number)
assert type_ is not None
isscalar = False
if dims is None or dims == 0 or set(dims) == {0}:
dims = [1]
isscalar = True
type_ = type_.lower()
tensor: Union[
torch.CharTensor,
torch.ShortTensor,
torch.IntTensor,
torch.LongTensor,
torch.HalfTensor,
torch.FloatTensor,
torch.DoubleTensor,
]
if type_ == "char":
tensor = torch.CharTensor(*dims)
elif type_ == "short":
tensor = torch.ShortTensor(*dims)
elif type_ == "int":
tensor = torch.IntTensor(*dims)
elif type_ == "long":
tensor = torch.LongTensor(*dims)
elif type_ == "half":
tensor = torch.HalfTensor(*dims)
elif type_ == "float":
tensor = torch.FloatTensor(*dims)
elif type_ == "double":
tensor = torch.DoubleTensor(*dims)
else:
raise ValueError(
"Unknown type, type should be one of the following strings: "
"char, short, int, long, half, float, double"
)
tensor.fill_(value) # type: ignore[call-overload]
if isscalar:
return g.op("Constant", *args, value_z=tensor, **kwargs)
return g.op("Constant", *args, value_t=tensor, **kwargs)
# TODO(#76254): Remove the deprecated function.
@_deprecation.deprecated(
"1.13",
"1.14",
"Internally use '_node_get' in symbolic_helper instead.",
)
def _node_getitem(self, k):
"""Gets attributes of a node which is polymorphic over return type.
This is monkey-patched onto Node.
"""
sel = self.kindOf(k)
return getattr(self, sel)(k)
torch._C.Graph.op = _graph_op # type: ignore[attr-defined]
torch._C.Graph.at = _aten_op # type: ignore[attr-defined]
torch._C.Block.op = _block_op # type: ignore[attr-defined]
torch._C.Graph.constant = _graph_constant # type: ignore[attr-defined]
torch._C.Node.__getitem__ = _node_getitem # type: ignore[attr-defined, misc, assignment]