|
from .module import Module |
|
from .utils import _pair, _quadruple, _ntuple |
|
from .. import functional as F |
|
|
|
from torch import Tensor |
|
from ..common_types import _size_2_t, _size_4_t, _size_6_t |
|
from typing import Sequence, Tuple |
|
|
|
|
|
|
|
|
|
__all__ = ['ConstantPad1d', 'ConstantPad2d', 'ConstantPad3d', 'ReflectionPad1d', 'ReflectionPad2d', |
|
'ReflectionPad3d', 'ReplicationPad1d', 'ReplicationPad2d', 'ReplicationPad3d', 'ZeroPad2d'] |
|
|
|
class _ConstantPadNd(Module): |
|
__constants__ = ['padding', 'value'] |
|
value: float |
|
padding: Sequence[int] |
|
|
|
def __init__(self, value: float) -> None: |
|
super(_ConstantPadNd, self).__init__() |
|
self.value = value |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return F.pad(input, self.padding, 'constant', self.value) |
|
|
|
def extra_repr(self) -> str: |
|
return 'padding={}, value={}'.format(self.padding, self.value) |
|
|
|
|
|
class ConstantPad1d(_ConstantPadNd): |
|
r"""Pads the input tensor boundaries with a constant value. |
|
|
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
|
|
|
Args: |
|
padding (int, tuple): the size of the padding. If is `int`, uses the same |
|
padding in both boundaries. If a 2-`tuple`, uses |
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`) |
|
|
|
Shape: |
|
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`. |
|
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where |
|
|
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
|
|
|
Examples:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = nn.ConstantPad1d(2, 3.5) |
|
>>> input = torch.randn(1, 2, 4) |
|
>>> input |
|
tensor([[[-1.0491, -0.7152, -0.0749, 0.8530], |
|
[-1.3287, 1.8966, 0.1466, -0.2771]]]) |
|
>>> m(input) |
|
tensor([[[ 3.5000, 3.5000, -1.0491, -0.7152, -0.0749, 0.8530, 3.5000, |
|
3.5000], |
|
[ 3.5000, 3.5000, -1.3287, 1.8966, 0.1466, -0.2771, 3.5000, |
|
3.5000]]]) |
|
>>> m = nn.ConstantPad1d(2, 3.5) |
|
>>> input = torch.randn(1, 2, 3) |
|
>>> input |
|
tensor([[[ 1.6616, 1.4523, -1.1255], |
|
[-3.6372, 0.1182, -1.8652]]]) |
|
>>> m(input) |
|
tensor([[[ 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000, 3.5000], |
|
[ 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000, 3.5000]]]) |
|
>>> # using different paddings for different sides |
|
>>> m = nn.ConstantPad1d((3, 1), 3.5) |
|
>>> m(input) |
|
tensor([[[ 3.5000, 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000], |
|
[ 3.5000, 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000]]]) |
|
|
|
""" |
|
padding: Tuple[int, int] |
|
|
|
def __init__(self, padding: _size_2_t, value: float): |
|
super(ConstantPad1d, self).__init__(value) |
|
self.padding = _pair(padding) |
|
|
|
|
|
class ConstantPad2d(_ConstantPadNd): |
|
r"""Pads the input tensor boundaries with a constant value. |
|
|
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
|
|
|
Args: |
|
padding (int, tuple): the size of the padding. If is `int`, uses the same |
|
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`, |
|
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`) |
|
|
|
Shape: |
|
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`. |
|
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where |
|
|
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
|
|
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
|
|
|
Examples:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = nn.ConstantPad2d(2, 3.5) |
|
>>> input = torch.randn(1, 2, 2) |
|
>>> input |
|
tensor([[[ 1.6585, 0.4320], |
|
[-0.8701, -0.4649]]]) |
|
>>> m(input) |
|
tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], |
|
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], |
|
[ 3.5000, 3.5000, 1.6585, 0.4320, 3.5000, 3.5000], |
|
[ 3.5000, 3.5000, -0.8701, -0.4649, 3.5000, 3.5000], |
|
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], |
|
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]]) |
|
>>> # using different paddings for different sides |
|
>>> m = nn.ConstantPad2d((3, 0, 2, 1), 3.5) |
|
>>> m(input) |
|
tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], |
|
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], |
|
[ 3.5000, 3.5000, 3.5000, 1.6585, 0.4320], |
|
[ 3.5000, 3.5000, 3.5000, -0.8701, -0.4649], |
|
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]]) |
|
|
|
""" |
|
__constants__ = ['padding', 'value'] |
|
padding: Tuple[int, int, int, int] |
|
|
|
def __init__(self, padding: _size_4_t, value: float) -> None: |
|
super(ConstantPad2d, self).__init__(value) |
|
self.padding = _quadruple(padding) |
|
|
|
|
|
class ConstantPad3d(_ConstantPadNd): |
|
r"""Pads the input tensor boundaries with a constant value. |
|
|
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
|
|
|
Args: |
|
padding (int, tuple): the size of the padding. If is `int`, uses the same |
|
padding in all boundaries. If a 6-`tuple`, uses |
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`, |
|
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`, |
|
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`) |
|
|
|
Shape: |
|
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`. |
|
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or |
|
:math:`(C, D_{out}, H_{out}, W_{out})`, where |
|
|
|
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}` |
|
|
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
|
|
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
|
|
|
Examples:: |
|
|
|
>>> m = nn.ConstantPad3d(3, 3.5) |
|
>>> input = torch.randn(16, 3, 10, 20, 30) |
|
>>> output = m(input) |
|
>>> # using different paddings for different sides |
|
>>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5) |
|
>>> output = m(input) |
|
|
|
""" |
|
padding: Tuple[int, int, int, int, int, int] |
|
|
|
def __init__(self, padding: _size_6_t, value: float) -> None: |
|
super(ConstantPad3d, self).__init__(value) |
|
self.padding = _ntuple(6)(padding) |
|
|
|
|
|
class _ReflectionPadNd(Module): |
|
__constants__ = ['padding'] |
|
padding: Sequence[int] |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return F.pad(input, self.padding, 'reflect') |
|
|
|
def extra_repr(self) -> str: |
|
return '{}'.format(self.padding) |
|
|
|
|
|
class ReflectionPad1d(_ReflectionPadNd): |
|
r"""Pads the input tensor using the reflection of the input boundary. |
|
|
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
|
|
|
Args: |
|
padding (int, tuple): the size of the padding. If is `int`, uses the same |
|
padding in all boundaries. If a 2-`tuple`, uses |
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`) |
|
|
|
Shape: |
|
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`. |
|
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where |
|
|
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
|
|
|
Examples:: |
|
|
|
>>> m = nn.ReflectionPad1d(2) |
|
>>> # xdoctest: +IGNORE_WANT("other tests seem to modify printing styles") |
|
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4) |
|
>>> input |
|
tensor([[[0., 1., 2., 3.], |
|
[4., 5., 6., 7.]]]) |
|
>>> m(input) |
|
tensor([[[2., 1., 0., 1., 2., 3., 2., 1.], |
|
[6., 5., 4., 5., 6., 7., 6., 5.]]]) |
|
>>> # using different paddings for different sides |
|
>>> m = nn.ReflectionPad1d((3, 1)) |
|
>>> m(input) |
|
tensor([[[3., 2., 1., 0., 1., 2., 3., 2.], |
|
[7., 6., 5., 4., 5., 6., 7., 6.]]]) |
|
|
|
""" |
|
padding: Tuple[int, int] |
|
|
|
def __init__(self, padding: _size_2_t) -> None: |
|
super(ReflectionPad1d, self).__init__() |
|
self.padding = _pair(padding) |
|
|
|
|
|
class ReflectionPad2d(_ReflectionPadNd): |
|
r"""Pads the input tensor using the reflection of the input boundary. |
|
|
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
|
|
|
Args: |
|
padding (int, tuple): the size of the padding. If is `int`, uses the same |
|
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`, |
|
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`) |
|
|
|
Shape: |
|
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`. |
|
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})` where |
|
|
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
|
|
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
|
|
|
Examples:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this") |
|
>>> m = nn.ReflectionPad2d(2) |
|
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3) |
|
>>> input |
|
tensor([[[[0., 1., 2.], |
|
[3., 4., 5.], |
|
[6., 7., 8.]]]]) |
|
>>> m(input) |
|
tensor([[[[8., 7., 6., 7., 8., 7., 6.], |
|
[5., 4., 3., 4., 5., 4., 3.], |
|
[2., 1., 0., 1., 2., 1., 0.], |
|
[5., 4., 3., 4., 5., 4., 3.], |
|
[8., 7., 6., 7., 8., 7., 6.], |
|
[5., 4., 3., 4., 5., 4., 3.], |
|
[2., 1., 0., 1., 2., 1., 0.]]]]) |
|
>>> # using different paddings for different sides |
|
>>> m = nn.ReflectionPad2d((1, 1, 2, 0)) |
|
>>> m(input) |
|
tensor([[[[7., 6., 7., 8., 7.], |
|
[4., 3., 4., 5., 4.], |
|
[1., 0., 1., 2., 1.], |
|
[4., 3., 4., 5., 4.], |
|
[7., 6., 7., 8., 7.]]]]) |
|
|
|
""" |
|
padding: Tuple[int, int, int, int] |
|
|
|
def __init__(self, padding: _size_4_t) -> None: |
|
super(ReflectionPad2d, self).__init__() |
|
self.padding = _quadruple(padding) |
|
|
|
|
|
class ReflectionPad3d(_ReflectionPadNd): |
|
r"""Pads the input tensor using the reflection of the input boundary. |
|
|
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
|
|
|
Args: |
|
padding (int, tuple): the size of the padding. If is `int`, uses the same |
|
padding in all boundaries. If a 6-`tuple`, uses |
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`, |
|
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`, |
|
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`) |
|
|
|
Shape: |
|
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`. |
|
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`, |
|
where |
|
|
|
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}` |
|
|
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
|
|
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
|
|
|
Examples:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this") |
|
>>> m = nn.ReflectionPad3d(1) |
|
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2) |
|
>>> m(input) |
|
tensor([[[[[7., 6., 7., 6.], |
|
[5., 4., 5., 4.], |
|
[7., 6., 7., 6.], |
|
[5., 4., 5., 4.]], |
|
[[3., 2., 3., 2.], |
|
[1., 0., 1., 0.], |
|
[3., 2., 3., 2.], |
|
[1., 0., 1., 0.]], |
|
[[7., 6., 7., 6.], |
|
[5., 4., 5., 4.], |
|
[7., 6., 7., 6.], |
|
[5., 4., 5., 4.]], |
|
[[3., 2., 3., 2.], |
|
[1., 0., 1., 0.], |
|
[3., 2., 3., 2.], |
|
[1., 0., 1., 0.]]]]]) |
|
""" |
|
padding: Tuple[int, int, int, int, int, int] |
|
|
|
def __init__(self, padding: _size_6_t) -> None: |
|
super(ReflectionPad3d, self).__init__() |
|
self.padding = _ntuple(6)(padding) |
|
|
|
|
|
class _ReplicationPadNd(Module): |
|
__constants__ = ['padding'] |
|
padding: Sequence[int] |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return F.pad(input, self.padding, 'replicate') |
|
|
|
def extra_repr(self) -> str: |
|
return '{}'.format(self.padding) |
|
|
|
|
|
class ReplicationPad1d(_ReplicationPadNd): |
|
r"""Pads the input tensor using replication of the input boundary. |
|
|
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
|
|
|
Args: |
|
padding (int, tuple): the size of the padding. If is `int`, uses the same |
|
padding in all boundaries. If a 2-`tuple`, uses |
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`) |
|
|
|
Shape: |
|
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`. |
|
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where |
|
|
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
|
|
|
Examples:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this") |
|
>>> m = nn.ReplicationPad1d(2) |
|
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4) |
|
>>> input |
|
tensor([[[0., 1., 2., 3.], |
|
[4., 5., 6., 7.]]]) |
|
>>> m(input) |
|
tensor([[[0., 0., 0., 1., 2., 3., 3., 3.], |
|
[4., 4., 4., 5., 6., 7., 7., 7.]]]) |
|
>>> # using different paddings for different sides |
|
>>> m = nn.ReplicationPad1d((3, 1)) |
|
>>> m(input) |
|
tensor([[[0., 0., 0., 0., 1., 2., 3., 3.], |
|
[4., 4., 4., 4., 5., 6., 7., 7.]]]) |
|
|
|
""" |
|
padding: Tuple[int, int] |
|
|
|
def __init__(self, padding: _size_2_t) -> None: |
|
super(ReplicationPad1d, self).__init__() |
|
self.padding = _pair(padding) |
|
|
|
|
|
class ReplicationPad2d(_ReplicationPadNd): |
|
r"""Pads the input tensor using replication of the input boundary. |
|
|
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
|
|
|
Args: |
|
padding (int, tuple): the size of the padding. If is `int`, uses the same |
|
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`, |
|
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`) |
|
|
|
Shape: |
|
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`. |
|
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where |
|
|
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
|
|
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
|
|
|
Examples:: |
|
|
|
>>> m = nn.ReplicationPad2d(2) |
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3) |
|
>>> input |
|
tensor([[[[0., 1., 2.], |
|
[3., 4., 5.], |
|
[6., 7., 8.]]]]) |
|
>>> m(input) |
|
tensor([[[[0., 0., 0., 1., 2., 2., 2.], |
|
[0., 0., 0., 1., 2., 2., 2.], |
|
[0., 0., 0., 1., 2., 2., 2.], |
|
[3., 3., 3., 4., 5., 5., 5.], |
|
[6., 6., 6., 7., 8., 8., 8.], |
|
[6., 6., 6., 7., 8., 8., 8.], |
|
[6., 6., 6., 7., 8., 8., 8.]]]]) |
|
>>> # using different paddings for different sides |
|
>>> m = nn.ReplicationPad2d((1, 1, 2, 0)) |
|
>>> m(input) |
|
tensor([[[[0., 0., 1., 2., 2.], |
|
[0., 0., 1., 2., 2.], |
|
[0., 0., 1., 2., 2.], |
|
[3., 3., 4., 5., 5.], |
|
[6., 6., 7., 8., 8.]]]]) |
|
|
|
""" |
|
padding: Tuple[int, int, int, int] |
|
|
|
def __init__(self, padding: _size_4_t) -> None: |
|
super(ReplicationPad2d, self).__init__() |
|
self.padding = _quadruple(padding) |
|
|
|
|
|
class ReplicationPad3d(_ReplicationPadNd): |
|
r"""Pads the input tensor using replication of the input boundary. |
|
|
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
|
|
|
Args: |
|
padding (int, tuple): the size of the padding. If is `int`, uses the same |
|
padding in all boundaries. If a 6-`tuple`, uses |
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`, |
|
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`, |
|
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`) |
|
|
|
Shape: |
|
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`. |
|
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`, |
|
where |
|
|
|
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}` |
|
|
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
|
|
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
|
|
|
Examples:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = nn.ReplicationPad3d(3) |
|
>>> input = torch.randn(16, 3, 8, 320, 480) |
|
>>> output = m(input) |
|
>>> # using different paddings for different sides |
|
>>> m = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1)) |
|
>>> output = m(input) |
|
|
|
""" |
|
padding: Tuple[int, int, int, int, int, int] |
|
|
|
def __init__(self, padding: _size_6_t) -> None: |
|
super(ReplicationPad3d, self).__init__() |
|
self.padding = _ntuple(6)(padding) |
|
|
|
|
|
class ZeroPad2d(ConstantPad2d): |
|
r"""Pads the input tensor boundaries with zero. |
|
|
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
|
|
|
Args: |
|
padding (int, tuple): the size of the padding. If is `int`, uses the same |
|
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`, |
|
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`) |
|
|
|
Shape: |
|
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`. |
|
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where |
|
|
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
|
|
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
|
|
|
Examples:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = nn.ZeroPad2d(2) |
|
>>> input = torch.randn(1, 1, 3, 3) |
|
>>> input |
|
tensor([[[[-0.1678, -0.4418, 1.9466], |
|
[ 0.9604, -0.4219, -0.5241], |
|
[-0.9162, -0.5436, -0.6446]]]]) |
|
>>> m(input) |
|
tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
|
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
|
[ 0.0000, 0.0000, -0.1678, -0.4418, 1.9466, 0.0000, 0.0000], |
|
[ 0.0000, 0.0000, 0.9604, -0.4219, -0.5241, 0.0000, 0.0000], |
|
[ 0.0000, 0.0000, -0.9162, -0.5436, -0.6446, 0.0000, 0.0000], |
|
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
|
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]]) |
|
>>> # using different paddings for different sides |
|
>>> m = nn.ZeroPad2d((1, 1, 2, 0)) |
|
>>> m(input) |
|
tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
|
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
|
[ 0.0000, -0.1678, -0.4418, 1.9466, 0.0000], |
|
[ 0.0000, 0.9604, -0.4219, -0.5241, 0.0000], |
|
[ 0.0000, -0.9162, -0.5436, -0.6446, 0.0000]]]]) |
|
|
|
""" |
|
padding: Tuple[int, int, int, int] |
|
|
|
def __init__(self, padding: _size_4_t) -> None: |
|
super(ZeroPad2d, self).__init__(padding, 0.) |
|
|
|
def extra_repr(self) -> str: |
|
return '{}'.format(self.padding) |
|
|